Last updated: 2025-08-19
Checks: 6 1
Knit directory: ChIPSeq_project/
This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20250815)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 841c632. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/Total_Reads_and_Mapped_Reads_CTCF_RAD21.Rmd
Modified: data/ChIP Seq Summary stat CTCF RAD21.csv
Modified: data/ChIP Seq Summary stat TOP2B P53.csv
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/Total_Reads_and_Mapped_Reads_CTCF_RAD21.Rmd
) and
HTML (docs/Total_Reads_and_Mapped_Reads_CTCF_RAD21.html
)
files. If you’ve configured a remote Git repository (see
?wflow_git_remote
), click on the hyperlinks in the table
below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 25ce453 | sayanpaul01 | 2025-08-18 | Commit |
Rmd | ab9a136 | sayanpaul01 | 2025-08-18 | Commit |
html | ab9a136 | sayanpaul01 | 2025-08-18 | Commit |
Rmd | 90183c3 | sayanpaul01 | 2025-08-17 | Commit |
html | 90183c3 | sayanpaul01 | 2025-08-17 | Commit |
Rmd | 7906757 | sayanpaul01 | 2025-08-15 | Commit |
html | 7906757 | sayanpaul01 | 2025-08-15 | Commit |
# Load necessary R packages
library(edgeR)
Warning: package 'edgeR' was built under R version 4.3.2
Loading required package: limma
Warning: package 'limma' was built under R version 4.3.1
library(limma)
library(RColorBrewer)
library(gridExtra)
library(reshape2)
library(data.table)
Warning: package 'data.table' was built under R version 4.3.3
Attaching package: 'data.table'
The following objects are masked from 'package:reshape2':
dcast, melt
library(tidyverse)
Warning: package 'tidyverse' was built under R version 4.3.2
Warning: package 'tidyr' was built under R version 4.3.3
Warning: package 'readr' was built under R version 4.3.3
Warning: package 'purrr' was built under R version 4.3.3
Warning: package 'dplyr' was built under R version 4.3.2
Warning: package 'stringr' was built under R version 4.3.2
Warning: package 'lubridate' was built under R version 4.3.3
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.2 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.4
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::between() masks data.table::between()
✖ dplyr::combine() masks gridExtra::combine()
✖ dplyr::filter() masks stats::filter()
✖ dplyr::first() masks data.table::first()
✖ lubridate::hour() masks data.table::hour()
✖ lubridate::isoweek() masks data.table::isoweek()
✖ dplyr::lag() masks stats::lag()
✖ dplyr::last() masks data.table::last()
✖ lubridate::mday() masks data.table::mday()
✖ lubridate::minute() masks data.table::minute()
✖ lubridate::month() masks data.table::month()
✖ lubridate::quarter() masks data.table::quarter()
✖ lubridate::second() masks data.table::second()
✖ purrr::transpose() masks data.table::transpose()
✖ lubridate::wday() masks data.table::wday()
✖ lubridate::week() masks data.table::week()
✖ lubridate::yday() masks data.table::yday()
✖ lubridate::year() masks data.table::year()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(scales)
Warning: package 'scales' was built under R version 4.3.2
Attaching package: 'scales'
The following object is masked from 'package:purrr':
discard
The following object is masked from 'package:readr':
col_factor
library(biomaRt)
Warning: package 'biomaRt' was built under R version 4.3.2
library(cowplot)
Warning: package 'cowplot' was built under R version 4.3.2
Attaching package: 'cowplot'
The following object is masked from 'package:lubridate':
stamp
library(ggrepel)
Warning: package 'ggrepel' was built under R version 4.3.3
library(corrplot)
Warning: package 'corrplot' was built under R version 4.3.3
corrplot 0.95 loaded
library(Hmisc)
Warning: package 'Hmisc' was built under R version 4.3.3
Attaching package: 'Hmisc'
The following objects are masked from 'package:dplyr':
src, summarize
The following objects are masked from 'package:base':
format.pval, units
library(ggpubr)
Warning: package 'ggpubr' was built under R version 4.3.1
Attaching package: 'ggpubr'
The following object is masked from 'package:cowplot':
get_legend
align<-read.csv("data/ChIP Seq Summary stat CTCF RAD21.csv")
map<-data.frame(align)
map$Treatment<- factor(map$Treatment, levels = c("VEH_CTCF", "DOX_CTCF", "VEH_RAD21", "DOX_RAD21", "VEH_Input_P53", "DOX_Input_P53"))
drug_palc <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
Ind_palc <- c("#ffbe0b","#ff006e","#fb5607", "#8338ec","#3a86ff","#4a4e69")
Treat_palc <- c("#ffbe0b","#ff006e","#fb5607", "#8338ec", "#800080","#FFC0CB")
Map_palc <- c("#9b19f5","#e6d800", "#b3d4ff")
Combined_palc <- c("#FF0000","#00FF00","#0000FF","#FFFF00","#FF00FF","#00FFFF","#FFA500","#800080","#FFC0CB","#A52A2A","#808080","#FFD700")
Type_palc <- c("#800080","#FFD700")
# Factor Sample_name to maintain order
map$Sample.Det<-factor(map$Sample.Det,levels = map$Sample.Det)
map %>%
#mutate(Drug=factor(Drug,levels=c("CX-5461","DOX","VEH"))) %>%
#mutate(Conc.=factor(Conc.,levels=c("0.1","0.5"))) %>%
#mutate(Time=factor(Time,levels=c("3","24","48"))) %>%
#group_by(Drug,Conc.,Time) %>%
ggplot(., aes (x =Sample.Det, y=Total.Reads..before.trimming., fill = Ind))+
geom_col()+
#geom_hline(aes(yintercept=20000000))+
scale_fill_manual(values=Ind_palc)+
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6))+
ggtitle(expression("Total number of reads by sample"))+
xlab("")+
ylab(expression("ChIP -sequencing reads"))+
theme_bw()+
theme(plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size =10, color = "black", angle = 0, hjust = 0.8, vjust = 0.5),
axis.text.x = element_text(size =10, color = "black", angle = 90, hjust = 1, vjust = 0.2),
#strip.text.x = element_text(size = 15, color = "black", face = "bold"),
strip.text.y = element_text(color = "white"))
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Total.Reads..before.trimming., fill = Ind)) +
geom_boxplot() +
scale_fill_manual(values = Ind_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Individual")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Treatment, y = Total.Reads..before.trimming., fill = Treatment)) +
geom_boxplot() +
scale_fill_manual(values = Treat_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Treatment")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Type, y = Total.Reads..before.trimming., fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Sample Type")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Total.Reads..before.trimming., fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6),
limits = c(0, NA)) +
ggtitle(expression("Total number of reads by Individual and Sample Type")) +
xlab("") +
ylab(expression("ChIP -sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# Keep sample order as in file
map$Sample.Det <- factor(map$Sample.Det, levels = map$Sample.Det)
# Make sure read counts are numeric (in case CSV parsed as character)
map <- map %>%
mutate(
`Total.Reads..before.trimming.` = as.numeric(`Total.Reads..before.trimming.`),
`Total.reads..after.Trimming.` = as.numeric(`Total.reads..after.Trimming.`)
)
# Compute kept fraction for annotation
map <- map %>%
mutate(kept_frac = `Total.reads..after.Trimming.` / `Total.Reads..before.trimming.`)
# Long format for before vs after
map_long <- map %>%
pivot_longer(
cols = c(`Total.Reads..before.trimming.`, `Total.reads..after.Trimming.`),
names_to = "TrimStage", values_to = "Reads"
) %>%
mutate(
TrimStage = factor(
TrimStage,
levels = c("Total.Reads..before.trimming.", "Total.reads..after.Trimming."),
labels = c("Before trimming", "After trimming")
)
)
# High-contrast (colorblind-safe) colors
stage_colors <- c("Before trimming" = "#1f78b4", # deep blue
"After trimming" = "#ff7f00") # bright orange
# Base plot
p <- ggplot(map_long, aes(x = Sample.Det, y = Reads, fill = TrimStage)) +
geom_col(position = position_dodge(width = 0.8), width = 0.75, color = "black") +
scale_fill_manual(values = stage_colors) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
ggtitle(expression("Total number of reads by sample: before vs after trimming")) +
xlab("") +
ylab(expression("ChIP-sequencing reads")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90, hjust = 1, vjust = 0.2),
legend.title = element_blank()
)
p
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
library(stringr)
# --- Prep -------------------------------------------------------------
# Use your existing data frame name: map (change to df if needed)
df <- map
# Ensure required columns exist / are numeric
df <- df %>%
mutate(
`Total.Reads..before.trimming.` = as.numeric(`Total.Reads..before.trimming.`),
`Total.reads..after.Trimming.` = as.numeric(`Total.reads..after.Trimming.`)
)
# Define Tx if your data uses 'Treatment'
if (!"Tx" %in% names(df) && "Treatment" %in% names(df)) {
df <- df %>% mutate(Tx = Treatment)
}
# Normalize factors you care about
df <- df %>%
mutate(
Ab = ifelse(is.na(Ab) | Ab == "", "Input", as.character(Ab)),
Type = factor(Type, levels = c("ChIP_DNA", "Input_DNA")) # adjust if your labels differ
)
# Helper: label function for Y axis (millions)
reads_lab <- label_number(suffix = " M", scale = 1e-6)
# Kept fraction (After / Before)
df <- df %>%
mutate(kept_frac = `Total.reads..after.Trimming.` / `Total.Reads..before.trimming.`)
# --- Group, summarise, pivot -----------------------------------------
group_sum <- df %>%
group_by(Ind, Type, Ab, Tx) %>%
summarise(
before_mean = mean(`Total.Reads..before.trimming.`, na.rm = TRUE),
after_mean = mean(`Total.reads..after.Trimming.`, na.rm = TRUE),
kept_pct = 100 * mean(kept_frac, na.rm = TRUE),
.groups = "drop"
) %>%
pivot_longer(
cols = c(before_mean, after_mean),
names_to = "stage",
values_to = "reads"
) %>%
mutate(
stage = factor(stage, levels = c("before_mean", "after_mean"),
labels = c("Before", "After")),
facet_id = paste0(Ind, "_", Type, "_", Ab)
)
# Order facets by Ind then Type (cleaner viewing)
facet_levels <- group_sum %>%
distinct(Ind, Type, Ab, facet_id) %>%
arrange(Ind, Type, Ab) %>%
pull(facet_id)
group_sum <- group_sum %>%
mutate(facet_id = factor(facet_id, levels = facet_levels))
# Optional: prettier strip labels (multi-line)
strip_labeller <- function(ids) {
parts <- str_split(ids, "_", n = 3, simplify = TRUE)
paste0("Ind: ", parts[,1], "\nType: ", parts[,2], "\nAb: ", parts[,3])
}
# Colors for Before / After
before_after_colors <- c("Before" = "#1f78b4", "After" = "#ff7f00")
# --- Plot -------------------------------------------------------------
p_group <- ggplot(group_sum, aes(x = Tx, y = reads, fill = stage)) +
geom_col(position = position_dodge(width = 0.8), width = 0.7, color = "black") +
scale_fill_manual(values = before_after_colors) +
facet_wrap(~ facet_id, scales = "free_y",
labeller = labeller(facet_id = strip_labeller)) +
scale_y_continuous(labels = reads_lab) +
labs(
x = "Treatment",
y = "Mean reads",
title = "Mean reads by Individual × Sample Type × Antibody"
) +
theme_bw(base_size = 12) +
theme(
legend.title = element_blank(),
plot.title = element_text(hjust = 0.5, face = "bold"),
strip.text = element_text(size = 10)
)
p_group
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Sample.Det, y = Duplication.percentage, fill = Ind)) +
geom_col(color = "black") +
scale_fill_manual(values = Ind_palc) +
scale_y_continuous(limits = c(0, 100), expand = c(0, 0)) +
ggtitle(expression("Duplication Percentage by Sample")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Duplication.percentage, fill = Ind)) +
geom_boxplot() +
scale_fill_manual(values = Ind_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Individual")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Treatment, y = Duplication.percentage, fill = Treatment)) +
geom_boxplot() +
scale_fill_manual(values = Treat_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Treatment")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Type, y = Duplication.percentage, fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Sample Type")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
map %>%
ggplot(aes(x = Ind, y = Duplication.percentage, fill = Type)) +
geom_boxplot() +
scale_fill_manual(values = Type_palc) +
scale_y_continuous(limits = c(0, 100), labels = function(x) paste0(x, "%")) +
ggtitle(expression("Duplication percentage by Individual and Sample Type")) +
xlab("") +
ylab(expression("Duplication percentage")) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.5),
axis.line = element_line(linewidth = 1.5),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90,
hjust = 1, vjust = 0.2),
strip.text.y = element_text(color = "white")
)
Version | Author | Date |
---|---|---|
7906757 | sayanpaul01 | 2025-08-15 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# If not already done, read with check.names=TRUE so we have dot-style names
# map <- read.csv("data/ChIP Seq Summary stat TOP2B P53.csv", check.names = TRUE)
# Keep sample order as in the file
map$Sample.Det <- factor(map$Sample.Det, levels = map$Sample.Det)
# Ensure numeric (CSV can import as character)
map <- map %>%
mutate(
Total.Reads..before.trimming. = as.numeric(Total.Reads..before.trimming.),
Total.reads..after.Trimming. = as.numeric(Total.reads..after.Trimming.),
Mapped.Reads = as.numeric(Mapped.Reads),
Unmapped.reads = as.numeric(Unmapped.reads)
)
# Long format for the 4 metrics
metric_order <- c("Total.Reads..before.trimming.",
"Total.reads..after.Trimming.",
"Mapped.Reads",
"Unmapped.reads")
map_long4 <- map %>%
dplyr::select(Sample.Det, all_of(metric_order)) %>%
pivot_longer(cols = all_of(metric_order), names_to = "Metric", values_to = "Reads") %>%
mutate(
Metric = factor(
Metric,
levels = metric_order,
labels = c("Before trimming", "After trimming", "Mapped reads", "Unmapped reads")
)
)
# Colors (colorblind-friendly)
metric_cols <- c(
"Before trimming" = "#1f78b4", # blue
"After trimming" = "#ff7f00", # orange
"Mapped reads" = "#33a02c", # green
"Unmapped reads" = "#6a737b" # gray
)
# Plot: grouped bars per sample
ggplot(map_long4, aes(x = Sample.Det, y = Reads, fill = Metric)) +
geom_col(position = position_dodge(width = 0.85), width = 0.72, color = "black") +
scale_fill_manual(values = metric_cols) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(
title = "Total reads per sample: Before vs After, Mapped vs Unmapped",
x = NULL,
y = "Reads"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(2), hjust = 0.5),
axis.title = element_text(size = 15, color = "black"),
axis.ticks = element_line(linewidth = 1.2),
axis.line = element_line(linewidth = 1.2),
axis.text.y = element_text(size = 10, color = "black"),
axis.text.x = element_text(size = 10, color = "black", angle = 90, hjust = 1, vjust = 0.2),
legend.title = element_blank()
)
Version | Author | Date |
---|---|---|
90183c3 | sayanpaul01 | 2025-08-17 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# Keep original dot-style names (assumes you read with check.names=TRUE)
# map <- read.csv("data/ChIP Seq Summary stat TOP2B P53.csv", check.names = TRUE)
# Make sure numeric
map <- map %>%
mutate(
Total.Reads..before.trimming. = as.numeric(Total.Reads..before.trimming.),
Mapped.Reads = as.numeric(Mapped.Reads),
Unmapped.reads = as.numeric(Unmapped.reads)
)
comp_cols <- c(
"Total reads" = "#1f78b4", # blue
"Mapped reads" = "#33a02c", # green
"Unmapped reads" = "#6a737b" # gray
)
# Long format for the 3 metrics
metric_order <- c("Total.Reads..before.trimming.", "Mapped.Reads", "Unmapped.reads")
metric_labels <- c("Total reads", "Mapped reads", "Unmapped reads")
map_long3 <- map %>%
pivot_longer(
cols = all_of(metric_order),
names_to = "Metric",
values_to = "Reads"
) %>%
mutate(
Metric = factor(Metric, levels = metric_order, labels = metric_labels)
)
ggplot(map_long3, aes(x = Ind, y = Reads, fill = Metric)) +
geom_boxplot(position = position_dodge(width = 0.75)) +
scale_fill_manual(values = comp_cols) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(title = "Reads by Individual: Total, mapped and Unmapped",
x = NULL, y = "Reads") +
theme_bw() +
theme(plot.title = element_text(size = rel(1.8), hjust = 0.5),
legend.title = element_blank(),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.2))
Version | Author | Date |
---|---|---|
90183c3 | sayanpaul01 | 2025-08-17 |
ggplot(map_long3, aes(x = Treatment, y = Reads, fill = Metric)) +
geom_boxplot(position = position_dodge(width = 0.75)) +
scale_fill_manual(values = comp_cols) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(title = "Reads by Treatment: Total, mapped and Unmapped",
x = NULL, y = "Reads") +
theme_bw() +
theme(plot.title = element_text(size = rel(1.8), hjust = 0.5),
legend.title = element_blank(),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.2))
Version | Author | Date |
---|---|---|
90183c3 | sayanpaul01 | 2025-08-17 |
ggplot(map_long3, aes(x = Type, y = Reads, fill = Metric)) +
geom_boxplot(position = position_dodge(width = 0.75)) +
scale_fill_manual(values = comp_cols) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(title = "Reads by Sample Type: Total, mapped and Unmapped",
x = NULL, y = "Reads") +
theme_bw() +
theme(plot.title = element_text(size = rel(1.8), hjust = 0.5),
legend.title = element_blank(),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.2))
Version | Author | Date |
---|---|---|
90183c3 | sayanpaul01 | 2025-08-17 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# Make sure numeric
map <- map %>%
mutate(
Total.Reads..before.trimming. = as.numeric(Total.Reads..before.trimming.),
Mapped.Reads = as.numeric(Mapped.Reads),
Unmapped.reads = as.numeric(Unmapped.reads)
)
# Colors for boxplot fill
comp_cols <- c(
"Total reads" = "#1f78b4", # blue
"Mapped reads" = "#33a02c", # green
"Unmapped reads" = "#6a737b" # gray
)
# Reshape into long format
map_long <- map %>%
dplyr::select(Ind, Type,
Total.Reads..before.trimming., Mapped.Reads, Unmapped.reads) %>%
tidyr::pivot_longer(
cols = c(Total.Reads..before.trimming., Mapped.Reads, Unmapped.reads),
names_to = "Metric", values_to = "Reads"
) %>%
dplyr::mutate(
Metric = factor(Metric,
levels = c("Total.Reads..before.trimming.", "Mapped.Reads", "Unmapped.reads"),
labels = c("Total reads", "Mapped reads", "Unmapped reads"))
)
# ---- Plot ----
ggplot(map_long, aes(x = Ind, y = Reads, fill = Metric)) +
geom_boxplot(outlier.size = 0.8, position = position_dodge(width = 0.75)) +
scale_fill_manual(values = comp_cols) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
facet_wrap(~ Type) +
labs(
title = "Read mapping by Individual and Sample Type",
x = "Individual", y = "Reads"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(1.6), hjust = 0.5),
legend.title = element_blank(),
strip.text = element_text(size = 11, face = "bold"),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.2)
)
Version | Author | Date |
---|---|---|
90183c3 | sayanpaul01 | 2025-08-17 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# ---- Load data (already read into "map") ----
# If needed, uncomment the following line to read fresh:
# map <- read.csv("data/ChIP Seq Summary stat TOP2B P53.csv", check.names = TRUE)
# Convert to tibble for tidyverse
map <- tibble::as_tibble(map)
# Keep sample order as in the file
map$Sample.Det <- factor(map$Sample.Det, levels = map$Sample.Det)
# Ensure numeric for all metrics
map <- map %>%
mutate(
Total.Reads..before.trimming. = as.numeric(Total.Reads..before.trimming.),
Total.reads..after.Trimming. = as.numeric(Total.reads..after.Trimming.),
Mapped.Reads = as.numeric(Mapped.Reads),
Reads.after.deduplication = as.numeric(Reads.after.deduplication),
Uniquely.mapped.reads.before.deduplication = as.numeric(Uniquely.mapped.reads.before.deduplication),
Uniquely.mapped.reads.after.deduplication = as.numeric(Uniquely.mapped.reads.after.deduplication),
Unmapped.reads = as.numeric(Unmapped.reads)
)
# ---- Define order, labels, and colors ----
metric_order <- c(
"Total.Reads..before.trimming.",
"Total.reads..after.Trimming.",
"Mapped.Reads",
"Reads.after.deduplication",
"Uniquely.mapped.reads.before.deduplication",
"Uniquely.mapped.reads.after.deduplication",
"Unmapped.reads"
)
metric_labels <- c(
"Total.Reads..before.trimming." = "Before trimming",
"Total.reads..after.Trimming." = "After trimming",
"Mapped.Reads" = "Mapped",
"Reads.after.deduplication" = "After deduplication",
"Uniquely.mapped.reads.before.deduplication" = "Uniquely mapped (pre-dedup)",
"Uniquely.mapped.reads.after.deduplication" = "Uniquely mapped (post-dedup)",
"Unmapped.reads" = "Unmapped"
)
metric_colors <- c(
"Before trimming" = "#1f78b4", # blue
"After trimming" = "#ff7f00", # orange
"Mapped" = "#33a02c", # green
"After deduplication" = "#b15928", # brown
"Uniquely mapped (pre-dedup)" = "#6a3d9a", # purple
"Uniquely mapped (post-dedup)" = "#e31a1c", # red
"Unmapped" = "#6a737b" # gray
)
# ---- Reshape to long format ----
map_long <- map %>%
dplyr::select(Sample.Det, dplyr::all_of(metric_order)) %>%
tidyr::pivot_longer(
cols = dplyr::all_of(metric_order),
names_to = "Metric", values_to = "Reads"
) %>%
dplyr::mutate(
Metric = factor(Metric, levels = metric_order, labels = metric_labels)
)
# ---- Plot ----
ggplot(map_long, aes(x = Sample.Det, y = Reads, fill = Metric)) +
geom_col(position = position_dodge(width = 0.9), width = 0.8, color = "black") +
scale_fill_manual(values = metric_colors) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(
title = "Read statistics per sample",
x = "Sample",
y = "Number of reads"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(1.6), hjust = 0.5),
axis.text.x = element_text(size = 8, angle = 90, hjust = 1, vjust = 0.2),
legend.title = element_blank()
)
Version | Author | Date |
---|---|---|
ab9a136 | sayanpaul01 | 2025-08-18 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# ---- Make sure numeric ----
map <- map %>%
mutate(
Total.Reads..before.trimming. = as.numeric(Total.Reads..before.trimming.),
Mapped.Reads = as.numeric(Mapped.Reads),
Reads.after.deduplication = as.numeric(Reads.after.deduplication),
Uniquely.mapped.reads.before.deduplication = as.numeric(Uniquely.mapped.reads.before.deduplication),
Uniquely.mapped.reads.after.deduplication = as.numeric(Uniquely.mapped.reads.after.deduplication)
)
# ---- Define order, labels, and colors ----
metric_order <- c(
"Total.Reads..before.trimming.",
"Mapped.Reads",
"Reads.after.deduplication",
"Uniquely.mapped.reads.before.deduplication",
"Uniquely.mapped.reads.after.deduplication"
)
metric_labels <- c(
"Total.Reads..before.trimming." = "Total reads",
"Mapped.Reads" = "Mapped reads",
"Reads.after.deduplication" = "Deduplicated reads",
"Uniquely.mapped.reads.before.deduplication" = "Uniquely mapped (pre-dedup)",
"Uniquely.mapped.reads.after.deduplication" = "Uniquely mapped (post-dedup)"
)
metric_colors <- c(
"Total reads" = "#1f78b4", # blue
"Mapped reads" = "#33a02c", # green
"Deduplicated reads" = "#b15928", # brown
"Uniquely mapped (pre-dedup)" = "#6a3d9a", # purple
"Uniquely mapped (post-dedup)" = "#e31a1c" # red
)
# ---- Reshape to long format ----
map_long <- map %>%
dplyr::select(Ind, dplyr::all_of(metric_order)) %>%
tidyr::pivot_longer(cols = dplyr::all_of(metric_order),
names_to = "Metric", values_to = "Reads") %>%
dplyr::mutate(
Metric = factor(Metric, levels = metric_order, labels = metric_labels)
)
# ---- Plot ----
ggplot(map_long, aes(x = Ind, y = Reads, fill = Metric)) +
geom_boxplot(position = position_dodge(width = 0.8)) +
scale_fill_manual(values = metric_colors) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(
title = "Read statistics by Individual",
x = "Individual",
y = "Number of reads"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(1.6), hjust = 0.5),
legend.title = element_blank(),
axis.text.x = element_text(size = 10, angle = 45, hjust = 1)
)
Version | Author | Date |
---|---|---|
ab9a136 | sayanpaul01 | 2025-08-18 |
# ---- Long format ----
map_long_tx <- map %>%
dplyr::select(Treatment, dplyr::all_of(metric_order)) %>%
tidyr::pivot_longer(
cols = dplyr::all_of(metric_order),
names_to = "Metric", values_to = "Reads"
) %>%
dplyr::mutate(
Metric = factor(Metric, levels = metric_order, labels = metric_labels)
)
# ---- Plot ----
ggplot(map_long_tx, aes(x = Treatment, y = Reads, fill = Metric)) +
geom_boxplot(position = position_dodge(width = 0.75)) +
scale_fill_manual(values = metric_colors) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(
title = "Reads by Treatment: Total, Mapped, Deduplicated, and Uniquely Mapped",
x = NULL, y = "Reads"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(1.8), hjust = 0.5),
legend.title = element_blank(),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.2)
)
Version | Author | Date |
---|---|---|
ab9a136 | sayanpaul01 | 2025-08-18 |
# ---- Long format by Sample Type ----
map_long_type <- map %>%
dplyr::select(Type, dplyr::all_of(metric_order)) %>%
tidyr::pivot_longer(
cols = dplyr::all_of(metric_order),
names_to = "Metric", values_to = "Reads"
) %>%
dplyr::mutate(
Metric = factor(Metric, levels = metric_order, labels = metric_labels)
)
# ---- Plot ----
ggplot(map_long_type, aes(x = Type, y = Reads, fill = Metric)) +
geom_boxplot(position = position_dodge(width = 0.75)) +
scale_fill_manual(values = metric_colors) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
labs(
title = "Reads by Sample Type: Total, Mapped, Deduplicated, and Uniquely Mapped",
x = NULL, y = "Reads"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(1.8), hjust = 0.5),
legend.title = element_blank(),
axis.text.x = element_text(angle = 0, hjust = 0.5, vjust = 0.5, size = 11)
)
Version | Author | Date |
---|---|---|
ab9a136 | sayanpaul01 | 2025-08-18 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# Make sure numeric
map <- map %>%
mutate(
Total.Reads..before.trimming. = as.numeric(Total.Reads..before.trimming.),
Mapped.Reads = as.numeric(Mapped.Reads),
Reads.after.deduplication = as.numeric(Reads.after.deduplication),
Uniquely.mapped.reads.before.deduplication = as.numeric(Uniquely.mapped.reads.before.deduplication),
Uniquely.mapped.reads.after.deduplication = as.numeric(Uniquely.mapped.reads.after.deduplication)
)
# Colors for boxplot fill (5 metrics)
comp_cols <- c(
"Total reads" = "#1f78b4", # blue
"Mapped reads" = "#33a02c", # green
"Deduplicated reads" = "#b15928", # brown
"Uniquely mapped (pre-dedup)" = "#6a3d9a", # purple
"Uniquely mapped (post-dedup)" = "#e31a1c" # red
)
# Reshape into long format
map_long <- map %>%
dplyr::select(
Ind, Type,
Total.Reads..before.trimming., Mapped.Reads,
Reads.after.deduplication,
Uniquely.mapped.reads.before.deduplication,
Uniquely.mapped.reads.after.deduplication
) %>%
tidyr::pivot_longer(
cols = c(
Total.Reads..before.trimming., Mapped.Reads,
Reads.after.deduplication,
Uniquely.mapped.reads.before.deduplication,
Uniquely.mapped.reads.after.deduplication
),
names_to = "Metric", values_to = "Reads"
) %>%
dplyr::mutate(
Metric = factor(
Metric,
levels = c(
"Total.Reads..before.trimming.", "Mapped.Reads",
"Reads.after.deduplication",
"Uniquely.mapped.reads.before.deduplication",
"Uniquely.mapped.reads.after.deduplication"
),
labels = c(
"Total reads", "Mapped reads",
"Deduplicated reads",
"Uniquely mapped (pre-dedup)",
"Uniquely mapped (post-dedup)"
)
)
)
# ---- Plot (same style as yours) ----
ggplot(map_long, aes(x = Ind, y = Reads, fill = Metric)) +
geom_boxplot(outlier.size = 0.8, position = position_dodge(width = 0.75)) +
scale_fill_manual(values = comp_cols) +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
facet_wrap(~ Type) +
labs(
title = "Read statistics by Individual and Sample Type",
x = "Individual", y = "Number of reads"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(1.6), hjust = 0.5),
legend.title = element_blank(),
strip.text = element_text(size = 11, face = "bold"),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.2)
)
Version | Author | Date |
---|---|---|
ab9a136 | sayanpaul01 | 2025-08-18 |
library(dplyr)
library(tidyr)
library(ggplot2)
library(scales)
# ---- Ensure numeric ----
map <- map %>%
mutate(
Total.Reads..before.trimming. = as.numeric(Total.Reads..before.trimming.),
Mapped.Reads = as.numeric(Mapped.Reads),
Reads.after.deduplication = as.numeric(Reads.after.deduplication),
Uniquely.mapped.reads.before.deduplication = as.numeric(Uniquely.mapped.reads.before.deduplication),
Nuclear.reads.before.dedup = as.numeric(Nuclear.reads.before.dedup),
Uniquely.mapped.reads.after.deduplication = as.numeric(Uniquely.mapped.reads.after.deduplication)
)
# ---- Metric definitions ----
metric_order <- c(
"Total.Reads..before.trimming.",
"Mapped.Reads",
"Reads.after.deduplication",
"Uniquely.mapped.reads.before.deduplication",
"Nuclear.reads.before.dedup",
"Uniquely.mapped.reads.after.deduplication"
)
metric_labels <- c(
"Total.Reads..before.trimming." = "total_reads",
"Mapped.Reads" = "mapped_reads",
"Reads.after.deduplication" = "dedup_reads",
"Uniquely.mapped.reads.before.deduplication" = "unique_pre_dedup",
"Nuclear.reads.before.dedup" = "nuclear_pre_dedup",
"Uniquely.mapped.reads.after.deduplication" = "unique_post_dedup"
)
# ---- Reshape ----
long5 <- map %>%
dplyr::select(Ind, Type, Treatment, dplyr::all_of(metric_order)) %>%
pivot_longer(
cols = dplyr::all_of(metric_order),
names_to = "Metric", values_to = "Reads"
) %>%
mutate(
Metric = factor(Metric, levels = metric_order, labels = metric_labels),
Ind = factor(Ind, levels = sort(unique(Ind))),
Tx = ifelse(grepl("^VEH", Treatment), "VEH", "DOX"),
Tx = factor(Tx, levels = c("VEH", "DOX")),
# build clean facet names: e.g. VEH_TOP2B_ChIP
Facet = paste(Tx, gsub("VEH_|DOX_", "", Treatment), Type, sep = "_"),
Facet = factor(Facet, levels = unique(paste(Tx, gsub("VEH_|DOX_", "", Treatment), Type, sep = "_")))
) %>%
droplevels()
# ---- Colors ----
Ind_palc <- c("#ffbe0b","#ff006e","#fb5607","#8338ec","#3a86ff","#4a4e69")
tx_cols <- c("VEH" = "#1f77b4", "DOX" = "#d62728")
# ---- Plot ----
ggplot(long5, aes(x = Metric, y = Reads)) +
geom_boxplot(aes(fill = Tx),
color = "black", width = 0.65, outlier.shape = NA,
position = position_dodge(width = 0.75)) +
geom_point(aes(color = Ind, group = Tx),
position = position_dodge(width = 0.75),
size = 2, alpha = 0.9) +
scale_color_manual(values = Ind_palc, name = "Ind") +
scale_fill_manual(values = tx_cols, name = "Tx") +
scale_y_continuous(labels = label_number(suffix = " M", scale = 1e-6)) +
facet_wrap(~Facet, scales = "free_y", ncol = 3) +
labs(
title = "Read metrics across treatments and sample types",
x = NULL,
y = "read_count"
) +
theme_bw() +
theme(
plot.title = element_text(size = rel(1.5), hjust = 0.5),
axis.text.x = element_text(angle = 30, hjust = 1),
strip.text.x = element_text(face = "bold")
)
sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 26100)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.utf8
[2] LC_CTYPE=English_United States.utf8
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8
time zone: America/Chicago
tzcode source: internal
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggpubr_0.6.0 Hmisc_5.2-3 corrplot_0.95 ggrepel_0.9.6
[5] cowplot_1.1.3 biomaRt_2.58.2 scales_1.3.0 lubridate_1.9.4
[9] forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4 purrr_1.0.4
[13] readr_2.1.5 tidyr_1.3.1 tibble_3.2.1 ggplot2_3.5.2
[17] tidyverse_2.0.0 data.table_1.17.0 reshape2_1.4.4 gridExtra_2.3
[21] RColorBrewer_1.1-3 edgeR_4.0.16 limma_3.58.1
loaded via a namespace (and not attached):
[1] DBI_1.2.3 bitops_1.0-9 rlang_1.1.3
[4] magrittr_2.0.3 git2r_0.36.2 compiler_4.3.0
[7] RSQLite_2.3.9 png_0.1-8 vctrs_0.6.5
[10] pkgconfig_2.0.3 crayon_1.5.3 fastmap_1.2.0
[13] backports_1.5.0 dbplyr_2.5.0 XVector_0.42.0
[16] labeling_0.4.3 promises_1.3.2 rmarkdown_2.29
[19] tzdb_0.5.0 bit_4.6.0 xfun_0.52
[22] zlibbioc_1.48.2 cachem_1.1.0 GenomeInfoDb_1.38.8
[25] jsonlite_2.0.0 progress_1.2.3 blob_1.2.4
[28] later_1.3.2 broom_1.0.8 prettyunits_1.2.0
[31] cluster_2.1.8.1 R6_2.6.1 bslib_0.9.0
[34] stringi_1.8.3 car_3.1-3 rpart_4.1.24
[37] jquerylib_0.1.4 Rcpp_1.0.12 knitr_1.50
[40] base64enc_0.1-3 IRanges_2.36.0 httpuv_1.6.15
[43] nnet_7.3-20 timechange_0.3.0 tidyselect_1.2.1
[46] abind_1.4-8 rstudioapi_0.17.1 yaml_2.3.10
[49] curl_6.2.2 lattice_0.22-7 plyr_1.8.9
[52] Biobase_2.62.0 withr_3.0.2 KEGGREST_1.42.0
[55] evaluate_1.0.3 foreign_0.8-90 BiocFileCache_2.10.2
[58] xml2_1.3.8 Biostrings_2.70.3 pillar_1.10.2
[61] filelock_1.0.3 carData_3.0-5 whisker_0.4.1
[64] checkmate_2.3.2 stats4_4.3.0 generics_0.1.3
[67] rprojroot_2.0.4 RCurl_1.98-1.17 S4Vectors_0.40.2
[70] hms_1.1.3 munsell_0.5.1 glue_1.7.0
[73] tools_4.3.0 ggsignif_0.6.4 locfit_1.5-9.12
[76] fs_1.6.3 XML_3.99-0.18 grid_4.3.0
[79] AnnotationDbi_1.64.1 colorspace_2.1-0 GenomeInfoDbData_1.2.11
[82] htmlTable_2.4.3 Formula_1.2-5 cli_3.6.1
[85] rappdirs_0.3.3 workflowr_1.7.1 gtable_0.3.6
[88] rstatix_0.7.2 sass_0.4.10 digest_0.6.34
[91] BiocGenerics_0.48.1 farver_2.1.2 htmlwidgets_1.6.4
[94] memoise_2.0.1 htmltools_0.5.8.1 lifecycle_1.0.4
[97] httr_1.4.7 statmod_1.5.0 bit64_4.6.0-1