Last updated: 2025-08-24

Checks: 6 1

Knit directory: ChIPSeq_project/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250815) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ed5c3f2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/Peak_Calling_cutoff_TOP2B_P53.Rmd
    Untracked:  data/macs3_broad_out_TOP2B/
    Untracked:  data/macs3_broad_out_TOP2B_dedup/
    Untracked:  data/macs3_narrow_out_P53/
    Untracked:  data/macs3_narrow_out_P53_dedup/
    Untracked:  data/macs3_narrow_out_TOP2B/
    Untracked:  data/macs3_narrow_out_TOP2B_dedup/
    Untracked:  plots/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


📌 TOP2B broad peaks (before deduplication)

library(tidyverse)
Warning: package 'tidyverse' was built under R version 4.3.2
Warning: package 'tidyr' was built under R version 4.3.3
Warning: package 'readr' was built under R version 4.3.3
Warning: package 'purrr' was built under R version 4.3.3
Warning: package 'dplyr' was built under R version 4.3.2
Warning: package 'stringr' was built under R version 4.3.2
Warning: package 'lubridate' was built under R version 4.3.3
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.2     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readr)
library(scales)   # <- needed for label_number()
Warning: package 'scales' was built under R version 4.3.2

Attaching package: 'scales'

The following object is masked from 'package:purrr':

    discard

The following object is masked from 'package:readr':

    col_factor
# --- metadata ---
metadata <- tribble(
  ~Sample,           ~Sample_Det,
  "MCW_SP_ChIP27",   "Ind1_VEH_TOP2B",
  "MCW_SP_ChIP28",   "Ind1_DOX_TOP2B",
  "MCW_SP_ChIP31",   "Ind2_VEH_TOP2B",
  "MCW_SP_ChIP32",   "Ind2_DOX_TOP2B",
  "MCW_SP_ChIP39",   "Ind3_VEH_TOP2B",
  "MCW_SP_ChIP40",   "Ind3_DOX_TOP2B",
  "MCW_SP_ChIP43",   "Ind4_VEH_TOP2B",
  "MCW_SP_ChIP44",   "Ind4_DOX_TOP2B",
  "MCW_SP_ChIP51",   "Ind5_VEH_TOP2B",
  "MCW_SP_ChIP52",   "Ind5_DOX_TOP2B",
  "MCW_SP_ChIP55",   "Ind6_VEH_TOP2B",
  "MCW_SP_ChIP56",   "Ind6_DOX_TOP2B"
) |> mutate(
  Sample     = factor(Sample,     levels = Sample),
  Sample_Det = factor(Sample_Det, levels = Sample_Det)
)

# --- load all cutoff analysis files ---
files <- list.files("data/macs3_broad_out_TOP2B",
                    pattern = "_cutoff_analysis\\.txt$", full.names = TRUE)

df <- files |>
  set_names() |>
  map_dfr(~ read_delim(.x, delim = "\t", show_col_types = FALSE), .id = "filepath") |>
  mutate(Sample = basename(filepath) |> str_remove("_cutoff_analysis\\.txt")) |>
  left_join(metadata, by = "Sample") |>
  mutate(Sample_Det = factor(Sample_Det, levels = levels(metadata$Sample_Det))) |>
  arrange(Sample_Det, qscore)

# Common x-scale (guarantees tick at 0)
x_fixed <- scale_x_continuous(
  limits = c(0, 7),
  breaks = 0:7,
  labels = as.character(0:7),
  expand = c(0, 0)
)

# ---- Plot with linear y-axis ----
p_linear <- ggplot(df, aes(qscore, npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  x_fixed +
  scale_y_continuous(labels = scales::label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (linear)") +
  theme_minimal(base_size = 12) +
  theme(strip.text = element_text(face = "bold", size = 10),
        panel.grid.minor = element_blank())
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
# ---- Plot with log10 y-axis ----
p_log <- df |>
  mutate(npeaks = ifelse(npeaks <= 0, NA, npeaks)) |>
  ggplot(aes(qscore, npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  x_fixed +
  scale_y_log10(labels = scales::label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (log10)") +
  theme_minimal(base_size = 12) +
  theme(strip.text = element_text(face = "bold", size = 10),
        panel.grid.minor = element_blank())

# ---- Print both ----
p_linear

p_log

📌 TOP2B narrow peaks (before deduplication)

library(tidyverse)
library(readr)

# --- metadata ---
metadata <- tribble(
  ~Sample,           ~Sample_Det,
  "MCW_SP_ChIP27",   "Ind1_VEH_TOP2B",
  "MCW_SP_ChIP28",   "Ind1_DOX_TOP2B",
  "MCW_SP_ChIP31",   "Ind2_VEH_TOP2B",
  "MCW_SP_ChIP32",   "Ind2_DOX_TOP2B",
  "MCW_SP_ChIP39",   "Ind3_VEH_TOP2B",
  "MCW_SP_ChIP40",   "Ind3_DOX_TOP2B",
  "MCW_SP_ChIP43",   "Ind4_VEH_TOP2B",
  "MCW_SP_ChIP44",   "Ind4_DOX_TOP2B",
  "MCW_SP_ChIP51",   "Ind5_VEH_TOP2B",
  "MCW_SP_ChIP52",   "Ind5_DOX_TOP2B",
  "MCW_SP_ChIP55",   "Ind6_VEH_TOP2B",
  "MCW_SP_ChIP56",   "Ind6_DOX_TOP2B"
)

# --- load all cutoff analysis files ---
files <- list.files("data/macs3_narrow_out_TOP2B", pattern = "_cutoff_analysis\\.txt$", full.names = TRUE)

df <- files %>%
  set_names() %>%
  map_dfr(~ read_delim(.x, delim = "\t", show_col_types = FALSE), .id = "filepath") %>%
  mutate(Sample = basename(filepath) %>% str_remove("_cutoff_analysis\\.txt")) %>%
  left_join(metadata, by = "Sample")

# ---- Plot with linear y-axis ----
p_linear <- df %>%
  ggplot(aes(x = qscore, y = npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  scale_x_continuous(
    limits = c(0, 7),
    breaks = 0:7,
    labels = as.character(0:7),   # ensures "0" shows up
    expand = c(0, 0)
  ) +
  scale_y_continuous(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (linear)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- Plot with log10 y-axis ----
p_log <- df %>%
  ggplot(aes(x = qscore, y = npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  scale_x_continuous(
    limits = c(0, 7),
    breaks = 0:7,
    labels = as.character(0:7),
    expand = c(0, 0)
  ) +
  scale_y_log10(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (log10)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- Print both ----
p_linear

p_log

📌 P53 narrow peaks (before deduplication)

library(tidyverse)
library(readr)
library(scales)

# --- metadata for p53 ---
metadata_p53 <- tribble(
  ~Sample,           ~Sample_Det,
  "MCW_SP_ChIP29",   "Ind1_VEH_p53",
  "MCW_SP_ChIP30",   "Ind1_DOX_p53",
  "MCW_SP_ChIP33",   "Ind2_VEH_p53",
  "MCW_SP_ChIP34",   "Ind2_DOX_p53",
  "MCW_SP_ChIP41",   "Ind3_VEH_p53",
  "MCW_SP_ChIP42",   "Ind3_DOX_p53",
  "MCW_SP_ChIP45",   "Ind4_VEH_p53",
  "MCW_SP_ChIP46",   "Ind4_DOX_p53",
  "MCW_SP_ChIP53",   "Ind5_VEH_p53",
  "MCW_SP_ChIP54",   "Ind5_DOX_p53",
  "MCW_SP_ChIP57",   "Ind6_VEH_p53",
  "MCW_SP_ChIP58",   "Ind6_DOX_p53"
) %>%
  mutate(
    Sample     = factor(Sample,     levels = Sample),
    Sample_Det = factor(Sample_Det, levels = Sample_Det)
  )

# --- load all cutoff-analysis files (edit path if needed) ---
data_dir <- "data/macs3_narrow_out_P53"   # <— change if your folder name differs
files <- list.files(data_dir, pattern = "_cutoff_analysis\\.txt$", full.names = TRUE)

df_p53 <- files %>%
  set_names() %>%
  map_dfr(~ read_delim(.x, delim = "\t", show_col_types = FALSE), .id = "filepath") %>%
  mutate(Sample = basename(filepath) %>% str_remove("_cutoff_analysis\\.txt")) %>%
  left_join(metadata_p53, by = "Sample") %>%
  mutate(Sample_Det = factor(Sample_Det, levels = levels(metadata_p53$Sample_Det))) %>%
  arrange(Sample_Det, qscore)

# --------- common x scale (forces 0..7 with a printed 0) ----------
x_fixed <- scale_x_continuous(
  limits = c(0, 7),
  breaks = 0:7,
  labels = as.character(0:7),
  expand = c(0, 0)
)

# ---- linear y ----
p_linear_p53 <- ggplot(df_p53, aes(qscore, npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  x_fixed +
  scale_y_continuous(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (linear)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- log10 y ----
p_log_p53 <- ggplot(df_p53, aes(qscore, npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  x_fixed +
  scale_y_log10(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (log10)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- show both ----
p_linear_p53

p_log_p53

📌 TOP2B broad peaks (after deduplication)

library(tidyverse)
library(readr)

# --- metadata ---
metadata <- tribble(
  ~Sample,           ~Sample_Det,
  "MCW_SP_ChIP27",   "Ind1_VEH_TOP2B",
  "MCW_SP_ChIP28",   "Ind1_DOX_TOP2B",
  "MCW_SP_ChIP31",   "Ind2_VEH_TOP2B",
  "MCW_SP_ChIP32",   "Ind2_DOX_TOP2B",
  "MCW_SP_ChIP39",   "Ind3_VEH_TOP2B",
  "MCW_SP_ChIP40",   "Ind3_DOX_TOP2B",
  "MCW_SP_ChIP43",   "Ind4_VEH_TOP2B",
  "MCW_SP_ChIP44",   "Ind4_DOX_TOP2B",
  "MCW_SP_ChIP51",   "Ind5_VEH_TOP2B",
  "MCW_SP_ChIP52",   "Ind5_DOX_TOP2B",
  "MCW_SP_ChIP55",   "Ind6_VEH_TOP2B",
  "MCW_SP_ChIP56",   "Ind6_DOX_TOP2B"
)

# --- load all cutoff analysis files ---
files <- list.files("data/macs3_broad_out_TOP2B_dedup", pattern = "_cutoff_analysis\\.txt$", full.names = TRUE)

df <- files %>%
  set_names() %>%
  map_dfr(~ read_delim(.x, delim = "\t", show_col_types = FALSE), .id = "filepath") %>%
  mutate(Sample = basename(filepath) %>% str_remove("_cutoff_analysis\\.txt")) %>%
  left_join(metadata, by = "Sample")

# ---- Plot with linear y-axis ----
p_linear <- df %>%
  ggplot(aes(x = qscore, y = npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  scale_x_continuous(
    limits = c(0, 7),
    breaks = 0:7,
    labels = as.character(0:7),   # ensures "0" shows up
    expand = c(0, 0)
  ) +
  scale_y_continuous(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (linear)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- Plot with log10 y-axis ----
p_log <- df %>%
  ggplot(aes(x = qscore, y = npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  scale_x_continuous(
    limits = c(0, 7),
    breaks = 0:7,
    labels = as.character(0:7),
    expand = c(0, 0)
  ) +
  scale_y_log10(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (log10)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- Print both ----
p_linear

p_log

📌 TOP2B narrow peaks (after deduplication)

library(tidyverse)
library(readr)

# --- metadata ---
metadata <- tribble(
  ~Sample,           ~Sample_Det,
  "MCW_SP_ChIP27",   "Ind1_VEH_TOP2B",
  "MCW_SP_ChIP28",   "Ind1_DOX_TOP2B",
  "MCW_SP_ChIP31",   "Ind2_VEH_TOP2B",
  "MCW_SP_ChIP32",   "Ind2_DOX_TOP2B",
  "MCW_SP_ChIP39",   "Ind3_VEH_TOP2B",
  "MCW_SP_ChIP40",   "Ind3_DOX_TOP2B",
  "MCW_SP_ChIP43",   "Ind4_VEH_TOP2B",
  "MCW_SP_ChIP44",   "Ind4_DOX_TOP2B",
  "MCW_SP_ChIP51",   "Ind5_VEH_TOP2B",
  "MCW_SP_ChIP52",   "Ind5_DOX_TOP2B",
  "MCW_SP_ChIP55",   "Ind6_VEH_TOP2B",
  "MCW_SP_ChIP56",   "Ind6_DOX_TOP2B"
)

# --- load all cutoff analysis files ---
files <- list.files("data/macs3_narrow_out_TOP2B_dedup", pattern = "_cutoff_analysis\\.txt$", full.names = TRUE)

df <- files %>%
  set_names() %>%
  map_dfr(~ read_delim(.x, delim = "\t", show_col_types = FALSE), .id = "filepath") %>%
  mutate(Sample = basename(filepath) %>% str_remove("_cutoff_analysis\\.txt")) %>%
  left_join(metadata, by = "Sample")

# ---- Plot with linear y-axis ----
p_linear <- df %>%
  ggplot(aes(x = qscore, y = npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  scale_x_continuous(
    limits = c(0, 7),
    breaks = 0:7,
    labels = as.character(0:7),   # ensures "0" shows up
    expand = c(0, 0)
  ) +
  scale_y_continuous(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (linear)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- Plot with log10 y-axis ----
p_log <- df %>%
  ggplot(aes(x = qscore, y = npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  scale_x_continuous(
    limits = c(0, 7),
    breaks = 0:7,
    labels = as.character(0:7),
    expand = c(0, 0)
  ) +
  scale_y_log10(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (log10)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- Print both ----
p_linear

p_log

📌 P53 narrow peaks (after deduplication)

library(tidyverse)
library(readr)
library(scales)

# --- metadata for p53 ---
metadata_p53 <- tribble(
  ~Sample,           ~Sample_Det,
  "MCW_SP_ChIP29",   "Ind1_VEH_p53",
  "MCW_SP_ChIP30",   "Ind1_DOX_p53",
  "MCW_SP_ChIP33",   "Ind2_VEH_p53",
  "MCW_SP_ChIP34",   "Ind2_DOX_p53",
  "MCW_SP_ChIP41",   "Ind3_VEH_p53",
  "MCW_SP_ChIP42",   "Ind3_DOX_p53",
  "MCW_SP_ChIP45",   "Ind4_VEH_p53",
  "MCW_SP_ChIP46",   "Ind4_DOX_p53",
  "MCW_SP_ChIP53",   "Ind5_VEH_p53",
  "MCW_SP_ChIP54",   "Ind5_DOX_p53",
  "MCW_SP_ChIP57",   "Ind6_VEH_p53",
  "MCW_SP_ChIP58",   "Ind6_DOX_p53"
) %>%
  mutate(
    Sample     = factor(Sample,     levels = Sample),
    Sample_Det = factor(Sample_Det, levels = Sample_Det)
  )

# --- load all cutoff-analysis files (edit path if needed) ---
data_dir <- "data/macs3_narrow_out_P53_dedup"   # <— change if your folder name differs
files <- list.files(data_dir, pattern = "_cutoff_analysis\\.txt$", full.names = TRUE)

df_p53 <- files %>%
  set_names() %>%
  map_dfr(~ read_delim(.x, delim = "\t", show_col_types = FALSE), .id = "filepath") %>%
  mutate(Sample = basename(filepath) %>% str_remove("_cutoff_analysis\\.txt")) %>%
  left_join(metadata_p53, by = "Sample") %>%
  mutate(Sample_Det = factor(Sample_Det, levels = levels(metadata_p53$Sample_Det))) %>%
  arrange(Sample_Det, qscore)

# --------- common x scale (forces 0..7 with a printed 0) ----------
x_fixed <- scale_x_continuous(
  limits = c(0, 7),
  breaks = 0:7,
  labels = as.character(0:7),
  expand = c(0, 0)
)

# ---- linear y ----
p_linear_p53 <- ggplot(df_p53, aes(qscore, npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  x_fixed +
  scale_y_continuous(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (linear)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- log10 y ----
p_log_p53 <- ggplot(df_p53, aes(qscore, npeaks, group = Sample)) +
  geom_line(size = 0.8, color = "#d95f02") +
  facet_wrap(~ Sample_Det, scales = "free_y", ncol = 6) +
  x_fixed +
  scale_y_log10(labels = label_number(big.mark = ",")) +
  labs(x = "Q Score", y = "Peak Counts (log10)") +
  theme_minimal(base_size = 12) +
  theme(
    strip.text = element_text(face = "bold", size = 10),
    panel.grid.minor = element_blank()
  )

# ---- show both ----
p_linear_p53

p_log_p53


sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scales_1.3.0    lubridate_1.9.4 forcats_1.0.0   stringr_1.5.1  
 [5] dplyr_1.1.4     purrr_1.0.4     readr_2.1.5     tidyr_1.3.1    
 [9] tibble_3.2.1    ggplot2_3.5.2   tidyverse_2.0.0

loaded via a namespace (and not attached):
 [1] sass_0.4.10       generics_0.1.3    stringi_1.8.3     hms_1.1.3        
 [5] digest_0.6.34     magrittr_2.0.3    evaluate_1.0.3    grid_4.3.0       
 [9] timechange_0.3.0  fastmap_1.2.0     rprojroot_2.0.4   workflowr_1.7.1  
[13] jsonlite_2.0.0    promises_1.3.2    jquerylib_0.1.4   cli_3.6.1        
[17] crayon_1.5.3      rlang_1.1.3       bit64_4.6.0-1     munsell_0.5.1    
[21] withr_3.0.2       cachem_1.1.0      yaml_2.3.10       parallel_4.3.0   
[25] tools_4.3.0       tzdb_0.5.0        colorspace_2.1-0  httpuv_1.6.15    
[29] vctrs_0.6.5       R6_2.6.1          lifecycle_1.0.4   git2r_0.36.2     
[33] bit_4.6.0         fs_1.6.3          vroom_1.6.5       pkgconfig_2.0.3  
[37] pillar_1.10.2     bslib_0.9.0       later_1.3.2       gtable_0.3.6     
[41] glue_1.7.0        Rcpp_1.0.12       xfun_0.52         tidyselect_1.2.1 
[45] rstudioapi_0.17.1 knitr_1.50        farver_2.1.2      htmltools_0.5.8.1
[49] labeling_0.4.3    rmarkdown_2.29    compiler_4.3.0