Last updated: 2025-03-01

Checks: 6 1

Knit directory: CX5461_Project/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250129) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5b6c285. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/Myeloma.Rmd
    Untracked:  data/Myeloma/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


📌 Proportion of Myeloma DE genes in Corrmotif clusters

📌 Load Required Libraries

library(ggplot2)
Warning: package 'ggplot2' was built under R version 4.3.3
library(dplyr)
Warning: package 'dplyr' was built under R version 4.3.2
library(tidyr)
Warning: package 'tidyr' was built under R version 4.3.3
library(org.Hs.eg.db)
Warning: package 'AnnotationDbi' was built under R version 4.3.2
Warning: package 'BiocGenerics' was built under R version 4.3.1
Warning: package 'Biobase' was built under R version 4.3.1
Warning: package 'IRanges' was built under R version 4.3.1
Warning: package 'S4Vectors' was built under R version 4.3.1
library(clusterProfiler)
Warning: package 'clusterProfiler' was built under R version 4.3.3
library(biomaRt)
Warning: package 'biomaRt' was built under R version 4.3.2
library(gprofiler2)
Warning: package 'gprofiler2' was built under R version 4.3.3
library(AnnotationDbi)

📌 Load Data

# Read the file
file_path <- "data/Myeloma/Myeloma.csv"
Myeloma <- read.csv(file_path, header = TRUE)


# Extract mouse gene symbols
mouse_genes <- Myeloma$Symbol

# Map mouse gene symbols to human homologs
homologs <- gorth(query = mouse_genes,
                  source_organism = "mmusculus",
                  target_organism = "hsapiens")


Myeloma_new<- data.frame(homologs$ortholog_name)


# Map gene symbols to Entrez IDs using org.Hs.eg.db
Myeloma_new <- Myeloma_new %>%
  mutate(Entrez_ID = mapIds(org.Hs.eg.db,
                            keys = homologs.ortholog_name,
                            column = "ENTREZID",
                            keytype = "SYMBOL",
                            multiVals = "first"))

📌 Proportion of DE genes across response groups

# Load the saved datasets
prob_all_1 <- read.csv("data/prob_all_1.csv")$Entrez_ID
prob_all_2 <- read.csv("data/prob_all_2.csv")$Entrez_ID
prob_all_3 <- read.csv("data/prob_all_3.csv")$Entrez_ID
prob_all_4 <- read.csv("data/prob_all_4.csv")$Entrez_ID

# Example Response Groups Data (Replace with actual data)
response_groups <- list(
  "Non Response" = prob_all_1, # Replace 'prob_all_1', 'prob_all_2', etc. with your actual response group dataframes
  "CX_DOX Shared Late Response" = prob_all_2,
  "DOX-Specific Response" = prob_all_3,
  "Late High Dose DOX-Specific Response" = prob_all_4
)

# Combine response groups into a single dataframe
response_groups_df <- bind_rows(
  lapply(response_groups, function(ids) {
    data.frame(Entrez_ID = ids)
  }),
  .id = "Set"
)

# Step 2: Match Overlap Genes with Response Groups
# Classify genes as DEG (match) or Non-DEG (no match)
response_groups_df <- response_groups_df %>%
  mutate(
    DEG_Status = ifelse(Entrez_ID %in% Myeloma_new$Entrez_ID, "DEG", "Non-DEG")
  )

# Step 3: Calculate Proportions
proportion_data <- response_groups_df %>%
  group_by(Set, DEG_Status) %>%
  summarize(Count = n(), .groups = "drop") %>%
  group_by(Set) %>%
  mutate(Percentage = (Count / sum(Count)) * 100)

# Step 4: Perform Chi-Square Tests (Refactored Version)
# Get counts for the Non Response group
non_response_counts <- proportion_data %>%
  filter(Set == "Non Response") %>%
  dplyr::select(DEG_Status, Count) %>%
  {setNames(.$Count, .$DEG_Status)}  # Create named vector for Non Response counts

# Perform chi-square test for selected response groups
chi_results <- proportion_data %>%
  filter(Set != "Non Response") %>% # Exclude "Non Response"
  group_by(Set) %>%
  summarize(
    p_value = {
      # Extract counts for the current response group
      group_counts <- Count[DEG_Status %in% c("DEG", "Non-DEG")]
      # Ensure there are no missing categories, fill with 0 if missing
      if (!"DEG" %in% DEG_Status) group_counts <- c(group_counts, 0)
      if (!"Non-DEG" %in% DEG_Status) group_counts <- c(0, group_counts)
      # Create contingency table
      contingency_table <- matrix(c(
        group_counts[1], group_counts[2],
        non_response_counts["DEG"], non_response_counts["Non-DEG"]
      ), nrow = 2, byrow = TRUE)
      # Debugging: Print the contingency table
      print(paste("Set:", unique(Set)))
      print("Contingency Table:")
      print(contingency_table)
      # Perform chi-square test
      if (all(contingency_table >= 0 & is.finite(contingency_table))) {
        chisq.test(contingency_table)$p.value
      } else {
        NA
      }
    },
    .groups = "drop"
  ) %>%
  mutate(Significance = ifelse(!is.na(p_value) & p_value < 0.05, "*", ""))

# Step 5: Merge Results and Plot Proportions
# Merge chi-square results back into proportion data
proportion_data <- proportion_data %>%
  left_join(chi_results %>% dplyr::select(Set, Significance), by = "Set")

# Define the correct order for response groups
response_order <- c(
  "Non Response",
  "CX_DOX Shared Late Response",
  "DOX-Specific Response",
  "Late High Dose DOX-Specific Response"
)
proportion_data$Set <- factor(proportion_data$Set, levels = response_order)

# Plot proportions with significance stars
ggplot(proportion_data, aes(x = Set, y = Percentage, fill = DEG_Status)) +
  geom_bar(stat = "identity", position = "stack") +
  geom_text(
    data = proportion_data %>% distinct(Set, Significance),
    aes(x = Set, y = 105, label = Significance), # Position stars above bars
    inherit.aes = FALSE,
    size = 6,
    color = "black",
    hjust = 0.5
  ) +
  scale_fill_manual(values = c("DEG" = "#e41a1c", "Non-DEG" = "#377eb8")) +
  labs(
    title = "Proportion of DEGs and Non-DEGs Across Response Groups (Myeloma Study)",
    x = "Response Groups",
    y = "Percentage",
    fill = "Category"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(size = rel(1.5), hjust = 0.5),
    axis.title = element_text(size = 15, color = "black"),
    axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
    legend.title = element_blank(),
    panel.border = element_rect(color = "black", fill = NA, linewidth = 1.2)
  )
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_text()`).

📌 Proportion of Myeloma genes in CX and DOX DEGs

📌 Read and Process Data

# Load DEGs Data
CX_0.1_3 <- read.csv("data/DEGs/Toptable_CX_0.1_3.csv")
CX_0.1_24 <- read.csv("data/DEGs/Toptable_CX_0.1_24.csv")
CX_0.1_48 <- read.csv("data/DEGs/Toptable_CX_0.1_48.csv")
CX_0.5_3 <- read.csv("data/DEGs/Toptable_CX_0.5_3.csv")
CX_0.5_24 <- read.csv("data/DEGs/Toptable_CX_0.5_24.csv")
CX_0.5_48 <- read.csv("data/DEGs/Toptable_CX_0.5_48.csv")

DOX_0.1_3 <- read.csv("data/DEGs/Toptable_DOX_0.1_3.csv")
DOX_0.1_24 <- read.csv("data/DEGs/Toptable_DOX_0.1_24.csv")
DOX_0.1_48 <- read.csv("data/DEGs/Toptable_DOX_0.1_48.csv")
DOX_0.5_3 <- read.csv("data/DEGs/Toptable_DOX_0.5_3.csv")
DOX_0.5_24 <- read.csv("data/DEGs/Toptable_DOX_0.5_24.csv")
DOX_0.5_48 <- read.csv("data/DEGs/Toptable_DOX_0.5_48.csv")

# Extract Significant DEGs
DEG1 <- as.character(CX_0.1_3$Entrez_ID[CX_0.1_3$adj.P.Val < 0.05])
DEG2 <- as.character(CX_0.1_24$Entrez_ID[CX_0.1_24$adj.P.Val < 0.05])
DEG3 <- as.character(CX_0.1_48$Entrez_ID[CX_0.1_48$adj.P.Val < 0.05])
DEG4 <- as.character(CX_0.5_3$Entrez_ID[CX_0.5_3$adj.P.Val < 0.05])
DEG5 <- as.character(CX_0.5_24$Entrez_ID[CX_0.5_24$adj.P.Val < 0.05])
DEG6 <- as.character(CX_0.5_48$Entrez_ID[CX_0.5_48$adj.P.Val < 0.05])
DEG7 <- as.character(DOX_0.1_3$Entrez_ID[DOX_0.1_3$adj.P.Val < 0.05])
DEG8 <- as.character(DOX_0.1_24$Entrez_ID[DOX_0.1_24$adj.P.Val < 0.05])
DEG9 <- as.character(DOX_0.1_48$Entrez_ID[DOX_0.1_48$adj.P.Val < 0.05])
DEG10 <- as.character(DOX_0.5_3$Entrez_ID[DOX_0.5_3$adj.P.Val < 0.05])
DEG11 <- as.character(DOX_0.5_24$Entrez_ID[DOX_0.5_24$adj.P.Val < 0.05])
DEG12 <- as.character(DOX_0.5_48$Entrez_ID[DOX_0.5_48$adj.P.Val < 0.05])

📌 Proportion of Myeloma genes in CX and DOX DEGs datasets

# Define CX-5461 DEG lists
CX_DEGs <- list(
  "CX_0.1_3" = DEG1, "CX_0.1_24" = DEG2, "CX_0.1_48" = DEG3,
  "CX_0.5_3" = DEG4, "CX_0.5_24" = DEG5, "CX_0.5_48" = DEG6
)

# Define DOX DEG lists
DOX_DEGs <- list(
  "DOX_0.1_3" = DEG7, "DOX_0.1_24" = DEG8, "DOX_0.1_48" = DEG9,
  "DOX_0.5_3" = DEG10, "DOX_0.5_24" = DEG11, "DOX_0.5_48" = DEG12
)

# Load Myeloma_new dataset (Use `Entrez_ID` for matching)
Myeloma_genes <- na.omit(Myeloma_new$Entrez_ID)  # Keep only Entrez_IDs

# **Process CX-5461 Samples**
CX_DEGs_df <- bind_rows(
  lapply(CX_DEGs, function(ids) data.frame(Entrez_ID = ids, Sample_Type = "CX-5461")),
  .id = "Sample"
) %>%
  mutate(Category = ifelse(Entrez_ID %in% Myeloma_genes, "Yes", "No")) %>%
  group_by(Sample, Sample_Type, Category) %>%
  summarise(Count = n(), .groups = "drop") %>%
  group_by(Sample, Sample_Type) %>%
  mutate(Percentage = (Count / sum(Count)) * 100)

# **Process DOX Samples**
DOX_DEGs_df <- bind_rows(
  lapply(DOX_DEGs, function(ids) data.frame(Entrez_ID = ids, Sample_Type = "DOX")),
  .id = "Sample"
) %>%
  mutate(Category = ifelse(Entrez_ID %in% Myeloma_genes, "Yes", "No")) %>%
  group_by(Sample, Sample_Type, Category) %>%
  summarise(Count = n(), .groups = "drop") %>%
  group_by(Sample, Sample_Type) %>%
  mutate(Percentage = (Count / sum(Count)) * 100)

# **Merge CX and DOX Dataframes**
proportion_data <- bind_rows(CX_DEGs_df, DOX_DEGs_df)

# **Ensure "Yes" is at the Bottom and "No" is at the Top**
proportion_data$Category <- factor(proportion_data$Category, levels = c("Yes", "No"))

# Define correct order for samples
sample_order <- c(
  "CX_0.1_3", "CX_0.1_24", "CX_0.1_48", "CX_0.5_3", "CX_0.5_24", "CX_0.5_48",
  "DOX_0.1_3", "DOX_0.1_24", "DOX_0.1_48", "DOX_0.5_3", "DOX_0.5_24", "DOX_0.5_48"
)
proportion_data$Sample <- factor(proportion_data$Sample, levels = sample_order)

# Save proportion data
write.csv(proportion_data, "C:/Work/Postdoc_UTMB/CX-5461 Project/Transcriptome literatures/lit2/Proportion_CX_DOX_Myeloma_fixed.csv", row.names = FALSE)

# **Generate Proportion Plot for CX-5461 and DOX Separately**
ggplot(proportion_data, aes(x = Sample, y = Percentage, fill = Category)) +
  geom_bar(stat = "identity", position = "stack") +  # Stacked bars
  facet_wrap(~Sample_Type, scales = "free_x") +  # Separate CX-5461 and DOX
  scale_y_continuous(labels = scales::percent_format(scale = 1), limits = c(0, 100)) +  # Y-axis as percentage
  scale_fill_manual(values = c("Yes" = "#e41a1c", "No" = "#377eb8")) +  # Yes (Red) at Bottom, No (Blue) on Top
  labs(
    title = "Proportion of Myeloma Genes in CX-5461 and DOX DEGs",
    x = "Samples (CX-5461 and DOX)",
    y = "Percentage",
    fill = "Category"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(size = rel(1.5), hjust = 0.5),
    axis.title = element_text(size = 15, color = "black"),
    axis.text.x = element_text(size = 10, angle = 45, hjust = 1),
    legend.title = element_blank(),
    panel.border = element_rect(color = "black", fill = NA, linewidth = 1.2),  # Updated for ggplot2 3.4.0+
    strip.background = element_blank(),
    strip.text = element_text(size = 12, face = "bold")
  )

📌 Correlation of Myeloma genes with CX and DOX expressed genes

📌 Correlation of Myeloma genes with CX expressed genes

# **Step 1: Map Gene Symbols to Entrez IDs using org.Hs.eg.db**
Myeloma <- Myeloma %>%
  mutate(Entrez_ID = mapIds(org.Hs.eg.db,
                            keys = Symbol,
                            column = "ENTREZID",
                            keytype = "SYMBOL",
                            multiVals = "first"))

# **Step 2: Convert Entrez_ID to character to avoid merge issues**
Myeloma$Entrez_ID <- as.character(Myeloma$Entrez_ID)

CX_0.1_3$Entrez_ID <- as.character(CX_0.1_3$Entrez_ID)
CX_0.5_3$Entrez_ID <- as.character(CX_0.5_3$Entrez_ID)
CX_0.1_24$Entrez_ID <- as.character(CX_0.1_24$Entrez_ID)
CX_0.5_24$Entrez_ID <- as.character(CX_0.5_24$Entrez_ID)
CX_0.1_48$Entrez_ID <- as.character(CX_0.1_48$Entrez_ID)
CX_0.5_48$Entrez_ID <- as.character(CX_0.5_48$Entrez_ID)

# **Step 3: Merge Myeloma dataset with CX at different concentrations & timepoints**
merged_CX_0.1_3 <- merge(Myeloma, CX_0.1_3, by = "Entrez_ID")
merged_CX_0.5_3 <- merge(Myeloma, CX_0.5_3, by = "Entrez_ID")
merged_CX_0.1_24 <- merge(Myeloma, CX_0.1_24, by = "Entrez_ID")
merged_CX_0.5_24 <- merge(Myeloma, CX_0.5_24, by = "Entrez_ID")
merged_CX_0.1_48 <- merge(Myeloma, CX_0.1_48, by = "Entrez_ID")
merged_CX_0.5_48 <- merge(Myeloma, CX_0.5_48, by = "Entrez_ID")

# **Step 4: Remove NA values**
merged_CX_0.1_3 <- na.omit(merged_CX_0.1_3)
merged_CX_0.5_3 <- na.omit(merged_CX_0.5_3)
merged_CX_0.1_24 <- na.omit(merged_CX_0.1_24)
merged_CX_0.5_24 <- na.omit(merged_CX_0.5_24)
merged_CX_0.1_48 <- na.omit(merged_CX_0.1_48)
merged_CX_0.5_48 <- na.omit(merged_CX_0.5_48)

# **Step 5: Rename columns to avoid conflicts**
colnames(merged_CX_0.1_3) <- colnames(merged_CX_0.5_3) <-
  colnames(merged_CX_0.1_24) <- colnames(merged_CX_0.5_24) <-
  colnames(merged_CX_0.1_48) <- colnames(merged_CX_0.5_48) <-
  c("Entrez_ID", "Symbol_Myeloma", "logFC_Myeloma", "logFC_CX", "AveExpr_CX", "t_CX", "P.Value_CX", "adj.P.Val_CX", "B_CX")

# **Step 6: Add timepoint and concentration labels for faceting**
merged_CX_0.1_3$Timepoint <- "3hr"
merged_CX_0.5_3$Timepoint <- "3hr"
merged_CX_0.1_24$Timepoint <- "24hr"
merged_CX_0.5_24$Timepoint <- "24hr"
merged_CX_0.1_48$Timepoint <- "48hr"
merged_CX_0.5_48$Timepoint <- "48hr"

merged_CX_0.1_3$Concentration <- "0.1 µM"
merged_CX_0.5_3$Concentration <- "0.5 µM"
merged_CX_0.1_24$Concentration <- "0.1 µM"
merged_CX_0.5_24$Concentration <- "0.5 µM"
merged_CX_0.1_48$Concentration <- "0.1 µM"
merged_CX_0.5_48$Concentration <- "0.5 µM"

# **Step 7: Combine all datasets into a single data frame**
merged_data_Myeloma <- rbind(
  merged_CX_0.1_3[, c("Entrez_ID", "logFC_CX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_CX_0.5_3[, c("Entrez_ID", "logFC_CX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_CX_0.1_24[, c("Entrez_ID", "logFC_CX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_CX_0.5_24[, c("Entrez_ID", "logFC_CX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_CX_0.1_48[, c("Entrez_ID", "logFC_CX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_CX_0.5_48[, c("Entrez_ID", "logFC_CX", "logFC_Myeloma", "Timepoint", "Concentration")]
)

# **Ensure timepoints are in correct order**
merged_data_Myeloma$Timepoint <- factor(merged_data_Myeloma$Timepoint, levels = c("3hr", "24hr", "48hr"))

# **Step 8: Compute correlations for each facet**
correlations <- merged_data_Myeloma %>%
  group_by(Concentration, Timepoint) %>%
  summarise(
    r_value = cor(logFC_CX, logFC_Myeloma, method = "pearson"),
    p_value = cor.test(logFC_CX, logFC_Myeloma, method = "pearson")$p.value,
    .groups = "drop"
  )

# **Step 9: Create correlation annotation data**
correlation_data <- correlations %>%
  mutate(
    x = 1.5,  # Adjusted to fit within fixed axis range (-5 to 2)
    y = max(merged_data_Myeloma$logFC_Myeloma, na.rm = TRUE) * 0.85,
    label = paste0("r = ", round(r_value, 3), "\np = ", signif(p_value, 3))
  )

# **Step 10: Create styled scatter plot with fixed X-axis range and ordered timepoints**
scatter_plot_Myeloma <- ggplot(merged_data_Myeloma, aes(x = logFC_CX, y = logFC_Myeloma)) +
  geom_point(alpha = 0.6, color = "black") +
  geom_smooth(method = "lm", color = "black", se = FALSE) +
  scale_x_continuous(limits = c(-5, 2)) +  # Fixed X-axis range
  labs(
    title = "Correlation between CX and Myeloma logFC",
    x = "logFC (CX)",
    y = "logFC (Myeloma)"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(size = 14, face = "bold"),
    panel.border = element_rect(color = "black", fill = NA, linewidth = 2),  # Outer border
    strip.background = element_rect(fill = "white", color = "black", linewidth = 1.5),
    strip.text = element_text(size = 12, face = "bold", color = "black")
  ) +
  facet_grid(Timepoint ~ Concentration, scales = "fixed") +  # Ensures correct timepoint order
  geom_text(data = correlation_data,
            aes(x = x, y = y, label = label),
            inherit.aes = FALSE, size = 3, fontface = "bold")

# **Step 11: Display the plot**
print(scatter_plot_Myeloma)
Warning: Removed 1 row containing non-finite outside the scale range
(`stat_smooth()`).
Warning: Removed 1 row containing missing values or values outside the scale range
(`geom_point()`).

📌 Correlation of Myeloma genes with DOX expressed genes

# **Step 1: Map Gene Symbols to Entrez IDs using org.Hs.eg.db**
Myeloma <- Myeloma %>%
  mutate(Entrez_ID = mapIds(org.Hs.eg.db,
                            keys = Symbol,
                            column = "ENTREZID",
                            keytype = "SYMBOL",
                            multiVals = "first"))

# **Step 2: Convert Entrez_ID to character to avoid merge issues**
Myeloma$Entrez_ID <- as.character(Myeloma$Entrez_ID)

DOX_0.1_3$Entrez_ID <- as.character(DOX_0.1_3$Entrez_ID)
DOX_0.5_3$Entrez_ID <- as.character(DOX_0.5_3$Entrez_ID)
DOX_0.1_24$Entrez_ID <- as.character(DOX_0.1_24$Entrez_ID)
DOX_0.5_24$Entrez_ID <- as.character(DOX_0.5_24$Entrez_ID)
DOX_0.1_48$Entrez_ID <- as.character(DOX_0.1_48$Entrez_ID)
DOX_0.5_48$Entrez_ID <- as.character(DOX_0.5_48$Entrez_ID)

# **Step 3: Merge Myeloma dataset with DOX at different concentrations & timepoints**
merged_DOX_0.1_3 <- merge(Myeloma, DOX_0.1_3, by = "Entrez_ID")
merged_DOX_0.5_3 <- merge(Myeloma, DOX_0.5_3, by = "Entrez_ID")
merged_DOX_0.1_24 <- merge(Myeloma, DOX_0.1_24, by = "Entrez_ID")
merged_DOX_0.5_24 <- merge(Myeloma, DOX_0.5_24, by = "Entrez_ID")
merged_DOX_0.1_48 <- merge(Myeloma, DOX_0.1_48, by = "Entrez_ID")
merged_DOX_0.5_48 <- merge(Myeloma, DOX_0.5_48, by = "Entrez_ID")

# **Step 4: Remove NA values**
merged_DOX_0.1_3 <- na.omit(merged_DOX_0.1_3)
merged_DOX_0.5_3 <- na.omit(merged_DOX_0.5_3)
merged_DOX_0.1_24 <- na.omit(merged_DOX_0.1_24)
merged_DOX_0.5_24 <- na.omit(merged_DOX_0.5_24)
merged_DOX_0.1_48 <- na.omit(merged_DOX_0.1_48)
merged_DOX_0.5_48 <- na.omit(merged_DOX_0.5_48)

# **Step 5: Rename columns to avoid conflicts**
colnames(merged_DOX_0.1_3) <- colnames(merged_DOX_0.5_3) <-
  colnames(merged_DOX_0.1_24) <- colnames(merged_DOX_0.5_24) <-
  colnames(merged_DOX_0.1_48) <- colnames(merged_DOX_0.5_48) <-
  c("Entrez_ID", "Symbol_Myeloma", "logFC_Myeloma", "logFC_DOX", "AveExpr_DOX", "t_DOX", "P.Value_DOX", "adj.P.Val_DOX", "B_DOX")

# **Step 6: Add timepoint and concentration labels for faceting**
merged_DOX_0.1_3$Timepoint <- "3hr"
merged_DOX_0.5_3$Timepoint <- "3hr"
merged_DOX_0.1_24$Timepoint <- "24hr"
merged_DOX_0.5_24$Timepoint <- "24hr"
merged_DOX_0.1_48$Timepoint <- "48hr"
merged_DOX_0.5_48$Timepoint <- "48hr"

merged_DOX_0.1_3$Concentration <- "0.1 µM"
merged_DOX_0.5_3$Concentration <- "0.5 µM"
merged_DOX_0.1_24$Concentration <- "0.1 µM"
merged_DOX_0.5_24$Concentration <- "0.5 µM"
merged_DOX_0.1_48$Concentration <- "0.1 µM"
merged_DOX_0.5_48$Concentration <- "0.5 µM"

# **Step 7: Combine all datasets into a single data frame**
merged_data_DOX <- rbind(
  merged_DOX_0.1_3[, c("Entrez_ID", "logFC_DOX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_DOX_0.5_3[, c("Entrez_ID", "logFC_DOX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_DOX_0.1_24[, c("Entrez_ID", "logFC_DOX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_DOX_0.5_24[, c("Entrez_ID", "logFC_DOX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_DOX_0.1_48[, c("Entrez_ID", "logFC_DOX", "logFC_Myeloma", "Timepoint", "Concentration")],
  merged_DOX_0.5_48[, c("Entrez_ID", "logFC_DOX", "logFC_Myeloma", "Timepoint", "Concentration")]
)

# **Ensure timepoints are in correct order**
merged_data_DOX$Timepoint <- factor(merged_data_DOX$Timepoint, levels = c("3hr", "24hr", "48hr"))

# **Step 8: Compute correlations for each facet**
correlations <- merged_data_DOX %>%
  group_by(Concentration, Timepoint) %>%
  summarise(
    r_value = cor(logFC_DOX, logFC_Myeloma, method = "pearson"),
    p_value = cor.test(logFC_DOX, logFC_Myeloma, method = "pearson")$p.value,
    .groups = "drop"
  )

# **Step 9: Create correlation annotation data**
correlation_data <- correlations %>%
  mutate(
    x = 1.5,  # Adjusted to fit within fixed axis range (-5 to 2)
    y = max(merged_data_DOX$logFC_Myeloma, na.rm = TRUE) * 0.85,
    label = paste0("r = ", round(r_value, 3), "\np = ", signif(p_value, 3))
  )

# **Step 10: Create styled scatter plot with fixed X-axis range and ordered timepoints**
scatter_plot_DOX <- ggplot(merged_data_DOX, aes(x = logFC_DOX, y = logFC_Myeloma)) +
  geom_point(alpha = 0.6, color = "black") +
  geom_smooth(method = "lm", color = "black", se = FALSE) +
  scale_x_continuous(limits = c(-5, 2)) +  # Fixed X-axis range
  labs(
    title = "Correlation between DOX and Myeloma logFC",
    x = "logFC (DOX)",
    y = "logFC (Myeloma)"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(size = 14, face = "bold"),
    panel.border = element_rect(color = "black", fill = NA, linewidth = 2),
    strip.background = element_rect(fill = "white", color = "black", linewidth = 1.5),
    strip.text = element_text(size = 12, face = "bold", color = "black")
  ) +
  facet_grid(Timepoint ~ Concentration, scales = "fixed") +
  geom_text(data = correlation_data,
            aes(x = x, y = y, label = label),
            inherit.aes = FALSE, size = 3, fontface = "bold")

# **Step 11: Display the plot**
print(scatter_plot_DOX)
Warning: Removed 16 rows containing non-finite outside the scale range
(`stat_smooth()`).
Warning: Removed 16 rows containing missing values or values outside the scale range
(`geom_point()`).


sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 22631)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] gprofiler2_0.2.3       biomaRt_2.58.2         clusterProfiler_4.10.1
 [4] org.Hs.eg.db_3.18.0    AnnotationDbi_1.64.1   IRanges_2.36.0        
 [7] S4Vectors_0.40.1       Biobase_2.62.0         BiocGenerics_0.48.1   
[10] tidyr_1.3.1            dplyr_1.1.4            ggplot2_3.5.1         

loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3      rstudioapi_0.17.1       jsonlite_1.8.9         
  [4] magrittr_2.0.3          farver_2.1.2            rmarkdown_2.29         
  [7] fs_1.6.3                zlibbioc_1.48.0         vctrs_0.6.5            
 [10] memoise_2.0.1           RCurl_1.98-1.13         ggtree_3.10.1          
 [13] htmltools_0.5.8.1       progress_1.2.3          curl_6.0.1             
 [16] gridGraphics_0.5-1      sass_0.4.9              bslib_0.8.0            
 [19] htmlwidgets_1.6.4       plyr_1.8.9              plotly_4.10.4          
 [22] cachem_1.0.8            igraph_2.1.1            lifecycle_1.0.4        
 [25] pkgconfig_2.0.3         Matrix_1.6-1.1          R6_2.5.1               
 [28] fastmap_1.1.1           gson_0.1.0              GenomeInfoDbData_1.2.11
 [31] digest_0.6.34           aplot_0.2.3             enrichplot_1.22.0      
 [34] colorspace_2.1-0        patchwork_1.3.0         rprojroot_2.0.4        
 [37] RSQLite_2.3.3           labeling_0.4.3          filelock_1.0.3         
 [40] mgcv_1.9-1              httr_1.4.7              polyclip_1.10-7        
 [43] compiler_4.3.0          bit64_4.0.5             withr_3.0.2            
 [46] BiocParallel_1.36.0     viridis_0.6.5           DBI_1.2.3              
 [49] ggforce_0.4.2           MASS_7.3-60             rappdirs_0.3.3         
 [52] HDO.db_0.99.1           tools_4.3.0             ape_5.8                
 [55] scatterpie_0.2.4        httpuv_1.6.15           glue_1.7.0             
 [58] nlme_3.1-166            GOSemSim_2.28.1         promises_1.3.0         
 [61] grid_4.3.0              shadowtext_0.1.4        reshape2_1.4.4         
 [64] fgsea_1.28.0            generics_0.1.3          gtable_0.3.6           
 [67] data.table_1.14.10      hms_1.1.3               xml2_1.3.6             
 [70] tidygraph_1.3.1         XVector_0.42.0          ggrepel_0.9.6          
 [73] pillar_1.10.1           stringr_1.5.1           yulab.utils_0.1.8      
 [76] later_1.3.2             splines_4.3.0           tweenr_2.0.3           
 [79] BiocFileCache_2.10.2    treeio_1.26.0           lattice_0.22-5         
 [82] bit_4.0.5               tidyselect_1.2.1        GO.db_3.18.0           
 [85] Biostrings_2.70.1       knitr_1.49              git2r_0.35.0           
 [88] gridExtra_2.3           xfun_0.50               graphlayouts_1.2.0     
 [91] stringi_1.8.3           workflowr_1.7.1         lazyeval_0.2.2         
 [94] ggfun_0.1.8             yaml_2.3.10             evaluate_1.0.3         
 [97] codetools_0.2-20        ggraph_2.2.1            tibble_3.2.1           
[100] qvalue_2.34.0           ggplotify_0.1.2         cli_3.6.1              
[103] munsell_0.5.1           jquerylib_0.1.4         Rcpp_1.0.12            
[106] GenomeInfoDb_1.38.8     dbplyr_2.5.0            png_0.1-8              
[109] XML_3.99-0.17           parallel_4.3.0          blob_1.2.4             
[112] prettyunits_1.2.0       DOSE_3.28.2             bitops_1.0-7           
[115] viridisLite_0.4.2       tidytree_0.4.6          scales_1.3.0           
[118] purrr_1.0.2             crayon_1.5.3            rlang_1.1.3            
[121] cowplot_1.1.3           fastmatch_1.1-4         KEGGREST_1.42.0