Last updated: 2025-05-06

Checks: 6 1

Knit directory: CX5461_Project/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250129) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version b9a2867. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    0.1 box.svg
    Ignored:    Rplot04.svg

Untracked files:
    Untracked:  0.1 density.svg
    Untracked:  0.1.emf
    Untracked:  0.1.svg
    Untracked:  0.5 box.svg
    Untracked:  0.5 density.svg
    Untracked:  0.5.svg
    Untracked:  Additional/
    Untracked:  CX_5461_Pattern_Genes_24hr.csv
    Untracked:  CX_5461_Pattern_Genes_3hr.csv
    Untracked:  Cell viability box plot.svg
    Untracked:  DRC1.svg
    Untracked:  Figure 1.jpeg
    Untracked:  Figure 1.pdf
    Untracked:  Figure_CM_Purity.pdf
    Untracked:  Rplot.svg
    Untracked:  Rplot01.svg
    Untracked:  Rplot02.svg
    Untracked:  Rplot03.svg
    Untracked:  Rplot05.svg
    Untracked:  Rplot06.svg
    Untracked:  Rplot07.svg
    Untracked:  Rplot08.jpeg
    Untracked:  Rplot08.svg
    Untracked:  Rplot09.svg
    Untracked:  Rplot10.svg
    Untracked:  Rplot11.svg
    Untracked:  TS HPA (Violin).svg
    Untracked:  TS HPA.svg
    Untracked:  TS_HA.svg
    Untracked:  TS_HV.svg
    Untracked:  Violin HA.svg
    Untracked:  Violin HV (CX vs DOX).svg
    Untracked:  Violin HV.svg
    Untracked:  data/AF.csv
    Untracked:  data/AF_Mapped.csv
    Untracked:  data/AF_genes.csv
    Untracked:  data/Annotated_DOX_Gene_Table.csv
    Untracked:  data/CAD_genes.csv
    Untracked:  data/Cardiotox.csv
    Untracked:  data/Cardiotox_mapped.csv
    Untracked:  data/DDR.csv
    Untracked:  data/DDR_Mapped.csv
    Untracked:  data/DOX_Vald.csv
    Untracked:  data/DOX_Vald_Mapped.csv
    Untracked:  data/Entrez_Cardiotox.csv
    Untracked:  data/Entrez_Cardiotox_Mapped.csv
    Untracked:  data/GWAS.xlsx
    Untracked:  data/GWAS_SNPs.bed
    Untracked:  data/HF.csv
    Untracked:  data/HF_Mapped.csv
    Untracked:  data/HF_genes.csv
    Untracked:  data/Hypertension_genes.csv
    Untracked:  data/MI_genes.csv
    Untracked:  data/P53_Target_mapped.csv
    Untracked:  data/TS.csv
    Untracked:  data/TS_HPA.csv
    Untracked:  data/TS_HPA_mapped.csv
    Untracked:  data/Toptable_CX_0.1_24.csv
    Untracked:  data/Toptable_CX_0.1_3.csv
    Untracked:  data/Toptable_CX_0.1_48.csv
    Untracked:  data/Toptable_CX_0.5_24.csv
    Untracked:  data/Toptable_CX_0.5_3.csv
    Untracked:  data/Toptable_CX_0.5_48.csv
    Untracked:  data/Toptable_DOX_0.1_24.csv
    Untracked:  data/Toptable_DOX_0.1_3.csv
    Untracked:  data/Toptable_DOX_0.1_48.csv
    Untracked:  data/Toptable_DOX_0.5_24.csv
    Untracked:  data/Toptable_DOX_0.5_3.csv
    Untracked:  data/Toptable_DOX_0.5_48.csv
    Untracked:  data/ts_data_mapped
    Untracked:  results/
    Untracked:  run_bedtools.bat

Unstaged changes:
    Deleted:    analysis/Actox.Rmd
    Modified:   analysis/Cardiotox.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Cardiotox.Rmd) and HTML (docs/Cardiotox.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7e4af99 sayanpaul01 2025-05-04 Commit
html 7e4af99 sayanpaul01 2025-05-04 Commit
Rmd 2f74123 sayanpaul01 2025-04-24 Commit
html 2f74123 sayanpaul01 2025-04-24 Commit
html 693aad4 sayanpaul01 2025-04-20 Build site.
html 0d15a95 sayanpaul01 2025-04-20 Commit
Rmd b5ace31 sayanpaul01 2025-04-20 Commit
html 910b6fb sayanpaul01 2025-04-20 Commit

📌 AC Cardiotoxicity

📌 Load Required Libraries

library(tidyverse) 
library(ggfortify)
library(cluster)
library(edgeR)
library(limma)
library(Homo.sapiens)
library(BiocParallel)
library(qvalue)
library(pheatmap)
library(clusterProfiler)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(RColorBrewer)
library(readr)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(ComplexHeatmap)
library(circlize)
library(grid)
library(reshape2)
library(dplyr)

# Load UCSC transcript database
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene

📌 Read and Process DEG Data

Entrez_IDs <- c(
  6272, 8029, 11128, 79899, 54477, 121665, 5095, 22863, 57161, 4692,
  8214, 23151, 56606, 108, 22999, 56895, 9603, 3181, 4023, 10499,
  92949, 4363, 10057, 5243, 5244, 5880, 1535, 2950, 847, 5447,
  3038, 3077, 4846, 3958, 23327, 29899, 23155, 80856, 55020, 78996,
  23262, 150383, 9620, 79730, 344595, 5066, 6251, 3482, 9588, 339416,
  7292, 55157, 87769, 23409, 720, 3107, 54535, 1590, 80059, 7991,
  57110, 8803, 323, 54826, 5916, 23371, 283337, 64078, 80010, 1933,
  10818, 51020
)

# Load DEG data
load_deg <- function(name) {
  read.csv(paste0("data/DEGs/Toptable_", name, ".csv"))
}

samples <- c("CX_0.1_3", "CX_0.1_24", "CX_0.1_48", 
             "CX_0.5_3", "CX_0.5_24", "CX_0.5_48",
             "DOX_0.1_3", "DOX_0.1_24", "DOX_0.1_48", 
             "DOX_0.5_3", "DOX_0.5_24", "DOX_0.5_48")

deg_list <- lapply(samples, load_deg)
names(deg_list) <- samples

# Subset and annotate DEG tables
get_subset <- function(df, name) {
  parts <- strsplit(name, "_")[[1]]
  df %>%
    filter(Entrez_ID %in% Entrez_IDs) %>%
    dplyr::select(Entrez_ID, logFC, adj.P.Val) %>%
    mutate(Drug = parts[1], Conc = parts[2], Time = parts[3])
}

combined_data <- bind_rows(mapply(get_subset, deg_list, names(deg_list), SIMPLIFY = FALSE))

# Add Gene symbol and significance
combined_data <- combined_data %>%
  mutate(Gene = mapIds(org.Hs.eg.db, keys = as.character(Entrez_ID),
                       column = "SYMBOL", keytype = "ENTREZID", multiVals = "first"),
         Significance = ifelse(adj.P.Val < 0.05, "*", ""))

📌 rsID + Study annotation

📌Create a matrix and heatmap

ha_top <- HeatmapAnnotation(
  Drug = drug,
  Conc = conc,
  Time = time,
  col = list(
    Drug = c("CX" = "blue", "DOX" = "red"),
    Conc = c("0.1" = "lightgreen", "0.5" = "darkgreen"),
    Time = c("3" = "yellow", "24" = "orange", "48" = "purple")
  ),
  annotation_height = unit(c(2, 2, 2), "cm")
)

# Row annotation
rsid_factor <- factor(rsid_info$rsID)
study_factor <- factor(rsid_info$Study, levels = c("GWAS1", "GWAS2", "TWAS"))

rsid_colors <- setNames(rainbow(length(levels(rsid_factor))), levels(rsid_factor))
study_colors <- setNames(RColorBrewer::brewer.pal(length(levels(study_factor)), "Set2"), levels(study_factor))

ha_left <- rowAnnotation(
  rsID = anno_text(rsid_info$rsID, location = 0, just = "left", gp = gpar(fontsize = 9)),
  rsID_color = rsid_factor,
  Study = study_factor,
  col = list(
    rsID_color = rsid_colors,
    Study = study_colors
  ),
  show_legend = c(rsID = FALSE, rsID_color = FALSE, Study = TRUE),
  annotation_name_side = "top",
  annotation_width = unit(c(4.3, 0.25, 0.25), "cm")
)

# Draw final heatmap
Heatmap(logFC_matrix,
        name = "logFC",
        top_annotation = ha_top,
        left_annotation = ha_left,
        cluster_columns = FALSE,
        cluster_rows = FALSE,
        show_row_names = TRUE,
        show_column_names = FALSE,
        cell_fun = function(j, i, x, y, width, height, fill) {
          grid.text(signif_matrix[i, j], x, y, gp = gpar(fontsize = 9))
        },
        column_title = "AC Toxicity-Associated Genes: CX-5461 vs DOX",
        column_title_gp = gpar(fontsize = 14, fontface = "bold")
)

Version Author Date
2f74123 sayanpaul01 2025-04-24
910b6fb sayanpaul01 2025-04-20

📌 DOX Cardiotoxicity

# Load necessary libraries
library(tidyverse)
library(ComplexHeatmap)
library(circlize)
library(org.Hs.eg.db)
library(reshape2)
library(grid)

# Set Entrez ID order
Entrez_IDs <- c(847, 873, 2064, 2878, 2944, 3038, 4846, 51196, 5880, 6687,
                7799, 4292, 5916, 3077, 51310, 9154, 64078, 5244, 10057, 10060,
                89845, 56853, 4625, 1573, 79890)

# Load annotated gene table
annotated_genes <- read.csv("data/Annotated_DOX_Gene_Table.csv")

# Load DEG data
CX_0.1_3 <- read.csv("data/DEGs/Toptable_CX_0.1_3.csv")
CX_0.1_24 <- read.csv("data/DEGs/Toptable_CX_0.1_24.csv")
CX_0.1_48 <- read.csv("data/DEGs/Toptable_CX_0.1_48.csv")
CX_0.5_3 <- read.csv("data/DEGs/Toptable_CX_0.5_3.csv")
CX_0.5_24 <- read.csv("data/DEGs/Toptable_CX_0.5_24.csv")
CX_0.5_48 <- read.csv("data/DEGs/Toptable_CX_0.5_48.csv")
DOX_0.1_3 <- read.csv("data/DEGs/Toptable_DOX_0.1_3.csv")
DOX_0.1_24 <- read.csv("data/DEGs/Toptable_DOX_0.1_24.csv")
DOX_0.1_48 <- read.csv("data/DEGs/Toptable_DOX_0.1_48.csv")
DOX_0.5_3 <- read.csv("data/DEGs/Toptable_DOX_0.5_3.csv")
DOX_0.5_24 <- read.csv("data/DEGs/Toptable_DOX_0.5_24.csv")
DOX_0.5_48 <- read.csv("data/DEGs/Toptable_DOX_0.5_48.csv")

# Subsetting helper
get_subset <- function(df) {
  df[df$Entrez_ID %in% Entrez_IDs, c("Entrez_ID", "logFC", "adj.P.Val")]
}

# Subset and annotate
add_metadata <- function(data, drug, conc, time) {
  data %>% mutate(Drug = drug, Conc = conc, Time = time)
}

combined_data <- bind_rows(
  add_metadata(get_subset(CX_0.1_3), "CX", 0.1, 3),
  add_metadata(get_subset(CX_0.1_24), "CX", 0.1, 24),
  add_metadata(get_subset(CX_0.1_48), "CX", 0.1, 48),
  add_metadata(get_subset(CX_0.5_3), "CX", 0.5, 3),
  add_metadata(get_subset(CX_0.5_24), "CX", 0.5, 24),
  add_metadata(get_subset(CX_0.5_48), "CX", 0.5, 48),
  add_metadata(get_subset(DOX_0.1_3), "DOX", 0.1, 3),
  add_metadata(get_subset(DOX_0.1_24), "DOX", 0.1, 24),
  add_metadata(get_subset(DOX_0.1_48), "DOX", 0.1, 48),
  add_metadata(get_subset(DOX_0.5_3), "DOX", 0.5, 3),
  add_metadata(get_subset(DOX_0.5_24), "DOX", 0.5, 24),
  add_metadata(get_subset(DOX_0.5_48), "DOX", 0.5, 48)
)

# Add gene symbol and significance
combined_data <- combined_data %>%
  mutate(Gene = mapIds(org.Hs.eg.db, keys = as.character(Entrez_ID),
                       column = "SYMBOL", keytype = "ENTREZID", multiVals = "first"),
         Significance = ifelse(adj.P.Val < 0.05, "*", ""))

# Merge with mechanistic category
combined_data <- left_join(combined_data, annotated_genes, by = c("Entrez_ID" = "ENTREZID"))

# Reorder by Entrez_ID
combined_data$Entrez_ID <- factor(combined_data$Entrez_ID, levels = Entrez_IDs)

# Preserve correct gene order
ordered_genes <- combined_data %>%
  distinct(Entrez_ID, Gene) %>%
  arrange(factor(Entrez_ID, levels = Entrez_IDs)) %>%
  pull(Gene)

# Create logFC and significance matrices
logFC_matrix <- acast(combined_data, Gene ~ paste(Drug, Conc, Time, sep = "_"), value.var = "logFC")
logFC_matrix <- logFC_matrix[ordered_genes, ]

signif_matrix <- acast(combined_data, Gene ~ paste(Drug, Conc, Time, sep = "_"), value.var = "Significance")
signif_matrix <- signif_matrix[ordered_genes, ]

# Desired column order: group by drug → conc → time
desired_order <- c(
  "CX_0.1_3", "CX_0.1_24", "CX_0.1_48",
  "CX_0.5_3", "CX_0.5_24", "CX_0.5_48",
  "DOX_0.1_3", "DOX_0.1_24", "DOX_0.1_48",
  "DOX_0.5_3", "DOX_0.5_24", "DOX_0.5_48"
)
logFC_matrix <- logFC_matrix[, desired_order]
signif_matrix <- signif_matrix[, desired_order]

# Column metadata
split_cols <- strsplit(colnames(logFC_matrix), "_")
drug <- sapply(split_cols, function(x) x[1])
conc <- sapply(split_cols, function(x) x[2])
time <- sapply(split_cols, function(x) x[3])

# Top annotation
ha_top <- HeatmapAnnotation(
  Drug = drug,
  Conc = conc,
  Time = time,
  col = list(
    Drug = c("CX" = "blue", "DOX" = "red"),
    Conc = c("0.1" = "lightgreen", "0.5" = "darkgreen"),
    Time = c("3" = "yellow", "24" = "orange", "48" = "purple")
  ),
  annotation_height = unit(c(2, 2, 2), "cm")
)

# Mechanistic category row annotation
category_mapping <- combined_data %>%
  distinct(Gene, Mechanistic_Implication) %>%
  filter(Gene %in% ordered_genes) %>%
  arrange(match(Gene, ordered_genes))

category_colors <- structure(
  c("darkorange", "steelblue", "darkgreen", "firebrick", "gold", "mediumpurple", "cyan"),
  names = unique(category_mapping$Mechanistic_Implication)
)

ha_left <- rowAnnotation(
  Category = category_mapping$Mechanistic_Implication,
  col = list(Category = category_colors),
  show_annotation_name = TRUE,
  annotation_name_side = "top"
)

# Draw heatmap
Heatmap(logFC_matrix,
        name = "logFC",
        top_annotation = ha_top,
        left_annotation = ha_left,
        show_row_names = TRUE,
        row_names_gp = gpar(fontsize = 10),
        show_column_names = FALSE,
        cluster_rows = FALSE,
        cluster_columns = FALSE,
        column_title = "Genes in DOX cardiotoxicity-associated loci\nresponse to CX5461 and DOX",
        column_title_gp = gpar(fontsize = 16, fontface = "bold"),
        cell_fun = function(j, i, x, y, width, height, fill) {
          grid.text(signif_matrix[i, j], x, y, gp = gpar(fontsize = 10))
        }
)

Version Author Date
7e4af99 sayanpaul01 2025-05-04
2f74123 sayanpaul01 2025-04-24

sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] reshape2_1.4.4                          
 [2] circlize_0.4.16                         
 [3] ComplexHeatmap_2.18.0                   
 [4] TxDb.Hsapiens.UCSC.hg38.knownGene_3.18.0
 [5] RColorBrewer_1.1-3                      
 [6] clusterProfiler_4.10.1                  
 [7] pheatmap_1.0.12                         
 [8] qvalue_2.34.0                           
 [9] BiocParallel_1.36.0                     
[10] Homo.sapiens_1.3.1                      
[11] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 
[12] org.Hs.eg.db_3.18.0                     
[13] GO.db_3.18.0                            
[14] OrganismDbi_1.44.0                      
[15] GenomicFeatures_1.54.4                  
[16] GenomicRanges_1.54.1                    
[17] GenomeInfoDb_1.38.8                     
[18] AnnotationDbi_1.64.1                    
[19] IRanges_2.36.0                          
[20] S4Vectors_0.40.2                        
[21] Biobase_2.62.0                          
[22] BiocGenerics_0.48.1                     
[23] edgeR_4.0.16                            
[24] limma_3.58.1                            
[25] cluster_2.1.8.1                         
[26] ggfortify_0.4.17                        
[27] lubridate_1.9.4                         
[28] forcats_1.0.0                           
[29] stringr_1.5.1                           
[30] dplyr_1.1.4                             
[31] purrr_1.0.4                             
[32] readr_2.1.5                             
[33] tidyr_1.3.1                             
[34] tibble_3.2.1                            
[35] ggplot2_3.5.2                           
[36] tidyverse_2.0.0                         

loaded via a namespace (and not attached):
  [1] splines_4.3.0               later_1.3.2                
  [3] BiocIO_1.12.0               bitops_1.0-9               
  [5] ggplotify_0.1.2             filelock_1.0.3             
  [7] polyclip_1.10-7             graph_1.80.0               
  [9] XML_3.99-0.18               lifecycle_1.0.4            
 [11] doParallel_1.0.17           rprojroot_2.0.4            
 [13] lattice_0.22-7              MASS_7.3-60                
 [15] magrittr_2.0.3              sass_0.4.10                
 [17] rmarkdown_2.29              jquerylib_0.1.4            
 [19] yaml_2.3.10                 httpuv_1.6.15              
 [21] cowplot_1.1.3               DBI_1.2.3                  
 [23] abind_1.4-8                 zlibbioc_1.48.2            
 [25] ggraph_2.2.1                RCurl_1.98-1.17            
 [27] yulab.utils_0.2.0           tweenr_2.0.3               
 [29] rappdirs_0.3.3              git2r_0.36.2               
 [31] GenomeInfoDbData_1.2.11     enrichplot_1.22.0          
 [33] ggrepel_0.9.6               tidytree_0.4.6             
 [35] codetools_0.2-20            DelayedArray_0.28.0        
 [37] DOSE_3.28.2                 xml2_1.3.8                 
 [39] ggforce_0.4.2               shape_1.4.6.1              
 [41] tidyselect_1.2.1            aplot_0.2.5                
 [43] farver_2.1.2                viridis_0.6.5              
 [45] matrixStats_1.5.0           BiocFileCache_2.10.2       
 [47] GenomicAlignments_1.38.2    jsonlite_2.0.0             
 [49] GetoptLong_1.0.5            tidygraph_1.3.1            
 [51] iterators_1.0.14            foreach_1.5.2              
 [53] tools_4.3.0                 progress_1.2.3             
 [55] treeio_1.26.0               Rcpp_1.0.12                
 [57] glue_1.7.0                  gridExtra_2.3              
 [59] SparseArray_1.2.4           xfun_0.52                  
 [61] MatrixGenerics_1.14.0       withr_3.0.2                
 [63] BiocManager_1.30.25         fastmap_1.2.0              
 [65] digest_0.6.34               timechange_0.3.0           
 [67] R6_2.6.1                    gridGraphics_0.5-1         
 [69] colorspace_2.1-0            Cairo_1.6-2                
 [71] biomaRt_2.58.2              RSQLite_2.3.9              
 [73] generics_0.1.3              data.table_1.17.0          
 [75] rtracklayer_1.62.0          prettyunits_1.2.0          
 [77] graphlayouts_1.2.2          httr_1.4.7                 
 [79] S4Arrays_1.2.1              scatterpie_0.2.4           
 [81] whisker_0.4.1               pkgconfig_2.0.3            
 [83] gtable_0.3.6                blob_1.2.4                 
 [85] workflowr_1.7.1             XVector_0.42.0             
 [87] shadowtext_0.1.4            htmltools_0.5.8.1          
 [89] fgsea_1.28.0                RBGL_1.78.0                
 [91] clue_0.3-66                 scales_1.3.0               
 [93] png_0.1-8                   ggfun_0.1.8                
 [95] knitr_1.50                  rstudioapi_0.17.1          
 [97] tzdb_0.5.0                  rjson_0.2.23               
 [99] nlme_3.1-168                curl_6.2.2                 
[101] GlobalOptions_0.1.2         cachem_1.1.0               
[103] parallel_4.3.0              HDO.db_0.99.1              
[105] restfulr_0.0.15             pillar_1.10.2              
[107] vctrs_0.6.5                 promises_1.3.2             
[109] dbplyr_2.5.0                evaluate_1.0.3             
[111] magick_2.8.6                cli_3.6.1                  
[113] locfit_1.5-9.12             compiler_4.3.0             
[115] Rsamtools_2.18.0            rlang_1.1.3                
[117] crayon_1.5.3                plyr_1.8.9                 
[119] fs_1.6.3                    stringi_1.8.3              
[121] viridisLite_0.4.2           munsell_0.5.1              
[123] Biostrings_2.70.3           lazyeval_0.2.2             
[125] GOSemSim_2.28.1             Matrix_1.6-1.1             
[127] patchwork_1.3.0             hms_1.1.3                  
[129] bit64_4.6.0-1               KEGGREST_1.42.0            
[131] statmod_1.5.0               SummarizedExperiment_1.32.0
[133] igraph_2.1.4                memoise_2.0.1              
[135] bslib_0.9.0                 ggtree_3.10.1              
[137] fastmatch_1.1-6             bit_4.6.0                  
[139] gson_0.1.0                  ape_5.8-1